
om
sl

ag
 p

ro
ef

sc
hr

if 
eg

on
 k

ro
m

m
e.

i1
   

1
28

-8
-2

01
1 

  2
2:

03
:0

9



 



Stellingen

behorende bij het proefschrift

Affective Signal Processing (ASP):
Unraveling the mystery of emotions

1. ASP zal op termijn middelen verschaffen om mensen te manipuleren (maar miss-
chien vinden ze dat niet eens erg).

2. ASP lijdt onder het uitblijven van standaarden.

3. Een voldoende voorwaarde om de kansverdeling van een continue stochast X op
een oneindig interval te karakteriseren door haar centrale momenten (bekend als
het Hamburger momentenprobleem) is:

∞
∑

n=1

(

inf
i≤n

(E[X2i])
1

2i

)−1

= ∞.

Daaraan is voldaan door biosignalen die een Laplace of normale verdeling hebben,
hetgeen meestal het geval is. Hierbij zijn X’s centrale momenten gedefinieerd als:

E[(X − x̄)n] =
∫

+∞

−∞

(x − x)nfX(x)dx,

waarbij x̄ de gemiddelde waarde van X is en fX de dichtheidsfunctie van X.
Het eindige rijtje van de eerste n centrale momenten (bijvoorbeeld n = 4) is
een compacte representatie van X en geeft, als zodanig, een alternatief voor
andere signaal decompositie technieken (bijvoorbeeld Fourier en wavelets), wat
ook interessant is voor ASP, vanuit zowel affectief en computationeel oogpunt.

4. “Als je kunt meten waarover je spreekt en je het uit kunt drukken in getallen dan
weet je er iets over.” (William Thomson, beter bekend als Lord Kelvin, 1824–
1907, 1883). Toch is het, om cognitieve engineering (zoals ASP) van theorie
naar de praktijk te brengen, nodig om ook van onduidelijke modellen gebruik te
maken.

5. Nu de samenleving ICT omarmt, worden ethische kwesties in verband met ICT
belangrijker. Helaas worstelt de ethiek nog met het veroveren van een plaats
binnen de techniek.

6. Multidisciplinair onderzoek is nog geen interdisciplinair onderzoek. In het eerste
geval is vaak nog sprake van onbegrip voor elkaars methoden, theorieën en cul-
tuur; in het tweede geval zijn deze problemen grotendeels opgelost.

7. Onderwijs is nog steeds het ondergeschoven kindje van de Nederlandse univer-
siteiten.

Egon L. van den Broek
Wenen, Oostenrijk, 1 augustus 2011



Propositions

belonging to the Ph.D.-thesis

Affective Signal Processing (ASP):
Unraveling the mystery of emotions

1. ASP will eventually provide the means to manipulate people (but, perhaps they
won’t even mind).

2. ASP suffers from a lack of standardization.

3. A sufficient condition for the probability distribution of a continuous random vari-
able X to be characterized by its central moments (i.e., the Hamburger moment
problem) for an infinite interval is given by:

∞
∑

n=1

(

inf
i≤n

(E[X2i])
1

2i

)−1

= ∞,

which holds for biosignals that have a Laplace or normal distribution, as is usually
the case. With X’s central moments being defined as:

E[(X − x̄)n] =
∫

+∞

−∞

(x − x)nfX(x)dx,

where x̄ is the average value of X and fX is the density function of X. The finite
series of the first n central moments (e.g., n = 4) is a compact representation of
X and provides, as such, an alternative to other signal decomposition techniques
(e.g., Fourier and wavelets), which is also interesting for ASP, from both an
affective and a computational point of view.

4. “. . . when you can measure what you are speaking about, and express it in num-

bers, you know something about it . . . ” (William Thomson; a.k.a. Lord Kelvin,
1824–1907, 1883). Although true, to bring cognitive engineering (e.g., ASP) from
theory to practice, ill defined models must also be embraced.

5. With society embracing ICT, ethical issues in relation to ICT are increasing in
importance. Regrettably, they are still struggling to find their way into engineer-
ing.

6. Multidisciplinary research is not the same as interdisciplinary research. With the
first, incomprehension for each other’s methods, theories, and culture is often
still present; with the latter, these problems have largely been resolved.

7. Education is still the red headed stepchild of the Dutch universities.

Egon L. van den Broek
Vienna, Austria, August 1, 2011
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Abstract

The quest towards an in-depth understanding of affective computing begins here. This is
needed as advances in computing and electrical engineering seem to show that the unthink-
able (e.g., huggable computers) is possible (in time). I will start with a brief general intro-
duction in Section 1.1. Subsequently, Sections 1.2–1.4 will introduce three core elements of
this monograph: i) Affect, emotion, and related constructs, ii) affective computing, and iii)

Affective Signal Processing (ASP). Next, in Section 1.5, the working model used in this mono-
graph will be presented: a closed loop model. The model’s signal processing and pattern
recognition pipeline will be discussed, as this forms the (technical) foundation of this mono-
graph. Section 1.6 will denote the relevance of ASP for computer science, as will be illustrated
through three of its disciplines: human-computer interaction, artificial intelligence, and health
informatics. This provides us with the ingredients for the quest for guidelines for ASP as de-
scribed in this monograph. As such, I hope that this monograph will become a springboard
for research on and applications of affective computing. I will end with an outline of this
monograph.

Parts of this chapter are taken from:

Broek, E.L. van den, Nijholt, A., & Westerink, J.H.D.M. (2010). Unveiling Affective Signals. In

E. Barakova, B. de Ruyter, and A.J. Spink (Eds.), ACM Proceedings of Measuring Behavior 2010:

Selected papers from the 7th international conference on methods and techniques in behavioral research,

Article No. a6. August 24–27, Eindhoven – The Netherlands.

and on the first three sections of:

Broek, E. L. van den, Janssen, J.H., Zwaag, M.D. van der, Westerink, J.H.D.M., & Healey, J.A.

Affective Signal Processing (ASP): A user manual. [in preparation]

which already appeared partially as:

Broek, E.L. van den et al. (2009/2010/2011). Prerequisites for Affective Signal Processing

(ASP) - Parts I-V. In A. Fred, J. Filipe, and H. Gamboa, Proceedings of BioSTEC 2009/2010/2011:

Proceedings of the International Joint Conference on Biomedical Engineering Systems and Technolo-

gies. January, Porto, Portugal / Valencia, Spain / Rome, Italy.



1.1 Introduction

1.1 Introduction

Originally, computers were invented for highly trained operators, to help them do massive
numbers of calculations [149, 610]. However, this origin dates from the first half of the
previous century, and much has changed since. nowadays, everybody uses them in one
of their many guises. Whereas previously computers were stationary entities the size of
a room, today we are in touch with various types of computers throughout our normal
daily lives, including our smart phones [3, 122, 135, 381, 460, 610, 713]. Computation is on
track to become even smaller and more pervasive. For example, microrobots can already
flow through your blood vessels and identify and treat physical damage [2, 165, 214, 479].
Moreover, from dedicated specialized machines, computers have become our window to
both the world and our social life [145, 472, 532].

Computers are slowly becoming dressed, huggable, and tangible and our reality will
become augmented by virtual realities [50, 594]. Artificial entities are becoming personal-
ized and are expected to understand more and more of their users’ feelings, emotions, and
moods [286, 594, 671]. Consequently, concepts such as emotions, that were originally the
playing field of philosophers, sociologists, and psychologists [302] have become entangled
in computer science as well [210]. This topic was baptized affective computing by Rosalind
W. Picard [520, 521]. Picard identified biosignals as an important covert channel to capture
human emotions, in addition to channels such as speech and computer vision.

Biosignals (or physiological signals) can be defined as (bio)electrical signals recorded
on the body surface, although both non-electrical biosignals and invasive recording tech-
niques exist as well. These bio(electrical) signals are related to ionic processes that arise as
a result of electrochemical activity of cells of specialized tissue (e.g., the nervous system).
This results in (changes in) electric currents produced by the sum of electrical potential dif-
ferences across the tissue. This property is similar regardless of the part of the body the cells
are located (e.g., the heart, muscles, or the brain) [245, 620]. For an overview of biosignals
used for affective computing, I refer to Table 1.1.

There have been many studies that have investigated the use of biosignals for affective
computing in the last decade. In Section 1.3 an overview of relevant handbooks will be
provided and in Chapter 2 an exhaustive review of research articles will be provided. The
handbooks and articles have in common that they illustrate, as I will also show later on (i.e.,
Chapter 2), that the results on affective computing have been slightly disappointing at best.
Hence, I believe a careful examination of the current state-of-the-art can help to provide new
insights for future progress. In sum, the goal of this monograph is to i) review the progress
made on the processing of biosignals related to emotions (i.e., Affective Signal Processing
(ASP) ), ii) conduct necessary additional research, and iii) provide guidelines on issues that
need to be tackled in order to improve ASP ’s performance.
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1.2 Affect, emotion, and related constructs

In the next section, I will provide a concise introduction on this monograph’s core
constructs affect, emotion, and related constructs. Subsequently, in Section 1.3, I will provide
a concise overview of affective computing by providing both a definition of the field and a
list of its representative handbooks. Section 1.4 will provide a definition of Affective Signal
Processing (ASP) and will introduce its research rationale. Next, in Section 1.5, my working
model for automatizing the recognition of emotion from biosignals will be introduced: a
closed loop model for affective computing. One component of the model receives our main
attention: the signal processing + pattern recognition processing pipeline. In Section 1.6, I
will describe how the work presented in this monograph is embedded in computer science.
Last, in Section 1.7, I will provide an outline of this monograph.

1.2 Affect, emotion, and related constructs

In 1993, Robert C. Solomon noted in the Handbook of Emotions [396, Chapter 1, p. 3, 1st
ed.] that “ “What is an emotion?” is the question that “was asked in precisely that form by
William James, as the title of an essay he wrote for Mind well over 100 years ago (James,
1884). . . . But the question “What is an emotion?” has proved to be as difficult to resolve
as the emotions have been to master. Just when it seems that an adequate definition is
in place, some new theory rears its unwelcome head and challenges our understanding.”
Regrettably, there is no reason to assume that this could not be the case for the concise
theoretical framework that will be presented here (cf. [302]). Nevertheless, we need such a
framework to bring emotion theory to affective computing practice.

In 2003, 10 years after Solomon’s notion, in the journal Psychological Review, James
A. Russell characterized the state-of-the-art of emotion (related) research as follows: “Most
major topics in psychology and every major problem faced by humanity involve emotion. Perhaps
the same could be said of cognition. Yet, in the psychology of human beings, with passions as well
as reasons, with feelings as well as thoughts, it is the emotional side that remains the more mysteri-
ous. Psychology and humanity can progress without considering emotion – about as fast as someone
running on one leg.” [567, p. 145]. Where Solomon [396, Chapter 1, p. 3, 1st ed.] stressed the
complexity of affect and emotions, Russell [567, p. 145] stressed the importance to take them
into account. Indeed, affect and emotions are of importance psychology and humanity but
also for (some branches of) science and engineering, as we will argue in this monograph.

Solomon’s [396, Chapter 1, p. 3, 1st ed.] and Russell’s [567, p. 145] quotes perfectly
points towards the complexity of the constructs at hand (i.e., affect and emotion, amongst
other things). It is well beyond the scope of this monograph to provide an exhaustive
overview of theory on affect, emotion, and related constructs. However, a basic understand-
ing and stipulative definitions are needed, as they are the target state affective computing
and ASP are aiming at. This section will provide the required definitions. Since this mono-

7



1 Introduction

graph aims at affective computing and ASP, I will focus on affect as the key construct, which
is, from a taxonomic perspective, a convenient choice as well. Affect is an umbrella construct
that, instead of emotions, incorporates all processes I am interested in, as we will see in the
remaining section.

Core affect is a neurophysiological state that is consciously accessible as a primitive,
universal, simple (i.e., irreducible on the mental plane), nonreflective feeling evident in
moods and emotions [531, 567]. It can exist with or without being labeled, interpreted, or
attributed to any cause [567]. People are always and continuously in a state of core affect,
although it is suggested that it disappears altogether from consciousness when it is neutral
and stable [567]. Affect influences our attitudes, emotions, and moods and as such our feel-
ings, cognitive functioning, behavior, and physiology [236, 567]; see also Table 1.2. As such,
affect is an umbrella construct, a superordinate category [236].

Affect is similar to Thayer’s activation [647], Watson and Tellegen’s affect [707], and
Morris’ mood [462] as well as what is often denoted as a feeling [567]. As such, core affect
is an integral blend of hedonic (pleasure-displeasure) and arousal (sleepy-activated) values;
in other words, it can be conveniently mapped onto the valence-arousal model [372, 566,
567, 647]. However, note that the term “affect” is used throughout the literature in many
different ways [531]. Often it is either ill defined or not defined at all. However, affect has
also been positioned on another level than that just sketched; for example, as referring to
behavioral aspects of emotion [236].

With affect being defined, we are left with a variety of related constructs. To achieve
a concise but proper introduction to these constructs, we adopt Scherer’s table of psycho-
logical constructs related to affective phenomena [58, Chapter 6]; see Table 1.2. It provides
concise definitions, examples, and seven dimensions on which the constructs can be charac-
terized. Together this provides more than rules of thumb, it demarcates the constructs up to
a reasonable and workable level. Suitable usage of Table 1.2 and the theoretical frameworks
it relies on opens affect’s black box and makes it a gray box [323, 517], which should be con-
ceived as a huge progress. The relations affective processes have with cognitive processes
are also interested in this perspective. These will be discussed in Section 1.6.

1.3 Affective Computing: A concise overview

Affect and its related constructs (see Section 1.2) have already been a topic of research for
centuries. In contrast, computers were developed only a few decades ago [149, 610]. At a
first glance, these two topics seem to be worlds apart; however, as denoted in Section 1.1,
emotions and computers have become entangled and, in time, will inevitably embrace each
other. Their relation, however, is fresh and still needs to mature.

8



1.3 Affective Computing: A concise overview

Ta
bl

e
1.

2:
D

es
ig

n
fe

at
u

re
d

el
im

it
at

io
n

of
p

sy
ch

ol
og

ic
al

co
ns

tr
u

ct
s

re
la

te
d

to
af

fe
ct

iv
e

p
he

no
m

en
a,

in
cl

u
d

in
g

th
ei

r
br

ie
fd

efi
ni

ti
on

s,
an

d
so

m
e

ex
am

p
le

s.
T

hi
s

ta
bl

e
is

ad
op

te
d

fr
om

[5
8,

C
ha

p
te

r
6]

an
d

[2
19

,C
ha

p
te

r
2]

.

co
ns

tr
u

ct
br

ie
fd

efi
ni

ti
on

an
d

ex
am

pl
es

in
te

ns
it

y
d

u
ra

ti
on

sy
nc

hr
o-

ev
en

t
ap

p
ra

is
al

ra
p

id
it

y
be

ha
vi

or
al

ni
za

ti
on

fo
cu

s
el

ic
it

at
io

n
of

ch
an

ge
im

p
ac

t

E
m

ot
io

n
R

el
at

iv
el

y
br

ie
f

ep
is

od
e

of
sy

nc
hr

on
iz

ed
re

-
sp

on
se

of
al

lo
r

m
os

to
rg

an
is

m
ic

su
bs

ys
te

m
s

in
re

sp
on

se
to

th
e

ev
al

u
at

io
n

of
an

ex
te

rn
al

or
in

te
rn

al
ev

en
t

as
be

in
g

of
m

aj
or

si
gn

ifi
-

ca
nc

e
(e

.g
.,

an
gr

y,
sa

d,
jo

yf
ul

,f
ew

fu
l,

as
ha

m
ed

,
pr

ou
d,

el
at

ed
.d

es
pe

ra
te

).

+
+
→

+
+

+
+

+
+

+
+

+
+

+
+

+
+

+
+

+
+

+

M
oo

d
D

if
fu

se
af

fe
ct

st
at

e,
m

os
t

p
ro

no
u

nc
ed

as
ch

an
ge

in
su

bj
ec

ti
ve

fe
el

in
g,

of
lo

w
in

te
ns

it
y

bu
t

re
la

ti
ve

ly
lo

ng
d

u
ra

ti
on

,
of

te
n

w
it

ho
u

t
ap

p
ar

en
t

ca
u

se
(e

.g
.,

ch
ee

rf
ul

,
gl

oo
m

y,
ir

ri
ta

-
bl

e,
lis

tl
es

s,
de

pr
es

se
d,

bu
oy

an
t)

.

+
→

+
+

+
+

+
+

+
+

+
+

In
te

r-
p

er
so

na
l

st
an

ce
s

A
ff

ec
ti

ve
st

an
ce

ta
ke

n
to

w
ar

d
an

ot
he

r
p

er
-

so
n

in
a

sp
ec

ifi
c

in
te

ra
ct

io
n,

co
lo

ri
ng

th
e

in
-

te
rp

er
so

na
l

ex
ch

an
ge

in
th

at
si

tu
at

io
n

(e
.g

.,
di

st
an

t,
co

ld
,w

ar
m

,s
up

po
rt

iv
e,

co
nt

em
pt

uo
us

).

+
→

+
+

+
→

+
+

+
+

+
+

+
+

+
+

+

A
tt

it
u

d
e

R
el

at
iv

el
y

en
d

u
ri

ng
,

af
fe

ct
iv

el
y

co
lo

re
d

be
-

lie
fs

,
p

re
fe

re
nc

es
,

an
d

p
re

d
is

p
os

it
io

ns
to

-
w

ar
d

s
ob

je
ct

s
or

p
er

so
ns

(e
.g

.,
lik

in
g,

lo
vi

ng
,

ha
ti

ng
,v

al
ui

ng
,d

es
ir

in
g)

.

0
→

+
+

+
+
→

+
+

+
0

0
+

0
→

+
+

P
er

so
na

lit
y

tr
ai

ts
E

m
ot

io
na

lly
la

d
en

,s
ta

bl
e

p
er

so
na

lit
y

d
is

p
o-

si
ti

on
s

an
d

be
ha

vi
or

te
nd

en
ci

es
,t

yp
ic

al
fo

r
a

p
er

so
n

(e
.g

.,
ne

rv
ou

s,
an

xi
ou

s,
re

ck
le

ss
,m

or
os

e,
ho

st
ile

,e
nv

io
us

,j
ea

lo
us

).

0
→

+
+

+
+

0
0

0
0

+

9



1 Introduction

In 1995, Rosalind W. Picard wrote a technical report [520], which was a thought-paper
that presented her initial thinking on affective computing. In a nutshell, this report identifies
a number of crucial notions which are still relevant. Moreover, Picard provided an initial
definition of affective computing : “. . . a set of ideas on what I call “affective computing,”
computing that relates to, arises from, or influences emotions.” [520, p. 1]

In 2005, the first International Conference on Affective Computing and Intelligent In-
teraction (ACII) was organized. Two of the conference chairs, Tao and Tan, wrote a review on
affective computing in which they defined it as: “Affective computing is trying to assign com-
puters the human-like capabilities of observation, interpretation and generation of affect features.”
(cf. [639]). As such, they assured a one-on-one mapping of affect onto the traditional com-
puter science / Human-Computer Interaction (HCI) triplet input (i.e., observation), process-
ing (i.e., interpretation), and output (i.e., generation).

In 2010, the IEEE Transactions on Affective Computing were launched. Its inaugural
issue contained a review by Rafael A. Calvo and Sidney D’Mello [87] who characterized
the rationale of affective computing with: “automatically recognizing and responding to a user’s
affective states during interactions with a computer can enhance the quality of the interaction, thereby
making a computer interface more usable, enjoyable, and effective.”

For this monograph, however, we will define affective computing as: “the scientific
understanding and computation of the mechanisms underlying affect and their embodiment
in machines”. This definition is inspired by the short definition of Artificial Intelligence
(AI) provided by the Association for the Advancement of Artificial Intelligence (AAAI)∗.
Drawing upon this definition, I have compiled an overview of books (see Table 1.3) that
can be considered as handbooks on or related to affective computing. As such, Table 1.3
provides a representative overview of the work conducted in this field.

I have chosen to exclude M.Sc./Ph.D.-theses from Table 1.3. However, three Ph.D.-
theses from the early years of affective computing should be mentioned: Jennifer A.
Healey’s (2000) “Wearable and automotive systems for affect recognition from physiology” [269],
Maja Pantic’s (2001) “Facial expression analysis by computational intelligence techniques” [509],
and Marc Schröder’s (2004) “Speech and emotion research: An overview of research frameworks
and a dimensional approach to emotional speech synthesis” [588], which are complementary with
respect to the signals used. Healey [269], Pantic [509], and Schröder [588] utilized respec-
tively biosignals, computer vision technology, and the speech signal. In the next chapter,
I will discuss this triplet in more depth. Additionally, the numerous (edited) volumes of
Klaus R. Scherer and colleagues, starting with [581] and [583] up to the more recent [582]
and [584], should be acknowledged. His work is of tremendous importance for affective
computing ; however, only a minority of his work includes a computing component [578].

∗Association for the Advancement of Artificial Intelligence (AAAI)’s URL: http://www.aaai.org/
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1.3 Affective Computing: A concise overview

Table 1.3: An overview of 24 handbooks on affective computing. Selection criteria: i)
on emotion and/or affect, ii) either a significant computing or engineering element or an
application-oriented approach, and iii) proceedings, M.Sc.-theses, Ph.D.-theses, books on
text-analyses, and books on solely theoretical logic-based approaches were excluded.

author(s) year title
[521] Picard 1997 Affective Computing
[153] DeLancey 2002 Passionate engines: What emotions reveal about the

mind and artificial intelligence
[656] Trappl et al. 2003 Emotions in humans and artifacts
[193] Fellous & Arbib 2005 Who needs emotions? The brain meets the robot
[455] Minsky 2006 The Emotion Machine: Commonsense thinking, Artifi-

cial Intelligence, and the future of the human mind
[527] Pivec 2006 Affective and emotional aspects of Human-Computer

Interaction: Game-based and innovative learning ap-
proaches

[500] Or 2008 Affective Computing: Focus on emotion expression, syn-
thesis and recognition

[303] Izdebski 2008 Emotions in the human voice, Volume I–III
[716] Westerink et al. 2008 Probing Experience: From assessment of user emotions

and behaviour to development of products
[558] Robinson & el

Kaliouby
2009 Computation of emotions in man and machines

[573] Sander &
Scherer

2009 The Oxford companion to emotion and affective sciences

[639] Tao & Tan 2009 Affective Information Processing
[662] Vallverdú &

Casacuberta
2009 Handbook of research on synthetic emotions and socia-

ble robotics: New applications in Affective Computing
and Artificial Intelligence

[487] Nishida et al. 2010 Modeling machine emotions for realizing intelligence
foundations and applications

[526] Pittermann et
al.

2010 Handling emotions in human-computer dialogues

[533] Prendinger &
Ishizuka

2010 Life-like characters: Tools, affective functions, and appli-
cations

[582] Scherer et al. 2010 Blueprint for Affective Computing: A sourcebook
[88] Calvo &

D’Mello
2011 New perspectives on affect and learning technologies

[228] Gökçay &
Yildirim

2011 Affective Computing and Interaction: Psychological,
cognitive and neuroscientific perspectives

[218] Fukuda 2011 Emotional engineering: Service development
[515] Petta et al. 2011 Emotion-Oriented Systems: The Humaine handbook
[714] Westerink et al. 2011 Sensing Emotions: The impact of context on experience

measurements
[293] Hudlicka 2012 Affective Computing: Theory, methods, and applica-

tions
[335] Khosla et al. 2012 Context-aware emotion-based multi-agent systems
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1 Introduction

1.4 Affective Signal Processing (ASP) : A research rationale

As was already stated, this monograph focusses on ASP instead of affective computing. This
gives rise to the question: what is the difference between the two? I have just provided a def-
inition of affective computing. Hence, what is missing is a definition of ASP. In Section 1.1
of this chapter, ASP was briefly denoted as “processing biosignals related to emotions”.

This directly excludes the computer vision branch of affective computing, including
vision-based analyses of facial expressions and body movements. Speech is not a direct
biosignal either. However, it is an indirect biosignal, as will be explained in Table 2.2 of
Chapter 2. This positions speech on the borderline of being a biosignal. However, the
reasons just mentioned speak in favor of denoting speech as a biosignal. Therefore, in this
monograph, for ASP purposes it is included as a biosignal.

In this monograph, the signals are: biosignals (or physiological signals) and speech.
By processing these signals we mean signal processing + pattern recognition, as will be ex-
plained in Section 1.5. Processing these signals should result in the identification of people’s
affective states. Taken together, in this monograph, we adopt the following definition of
ASP: processing biosignals with the aim to acquire a scientific understanding and computa-
tion of the mechanisms underlying affect and their embodiment in machines.

Now that ASP is defined, the question remains what the distinction is between affec-
tive computing and ASP? This is their difference in foci. In practice, research on affective
computing often relies on its computing component (e.g., pattern recognition). With the
adoption of ASP as research rationale instead of affective computing, I want to shift the fo-
cus from computing to a proper mapping of the underlying affective processes on the char-
acteristics of the biosignals. The underlying assumption behind this shift in focus between
affective computing and ASP is that the computing component of affective computing can
only be successful if this mapping is well understood.

In the next section, I will define a closed loop model for ASP (but which also would suit
affective computing nicely). This model will prove to be generic as ASP is envisioned to be
applied in virtually all possible situations. Moreover, it allows us to discuss both affective
computing and ASP in more depth than done so far.

1.5 The closed loop model

For over a century, closed loop models have been known in science and engineering, in
particular in control theory [619] and electronics [477]. Closed loop models can be concisely
defined as control systems with an active feedback loop. This loop allows the control unit
to dynamically compensate for changes in the system. The output of the system is fed back
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Figure 1.1: The (general) human-machine closed loop model. The model’s signal processing
+ pattern recognition component, denoted in gray, is the component on which this mono-
graph will focus (for more detail, see Figure 1.2). Within the scope of this monograph, the
model’s domain of application is affective computing.

through a sensor measurement to a control unit, which takes the error between a reference
and the output to change the inputs to the system under control. In control theory, two
types of control systems are distinguished: single-input-single-output (SISO) and Multi-
Input-Multi-Output (MIMO; i.e., with more than one input/output) control systems.

More recently, a new class of closed loop models was initialized: closed loops that take
a human / a user into the loop (cf. [587, p. 2]); see also Figure 1.1. Their descriptions target
various areas but are essentially the same, comprising: sensors, processing, modeling, and
actuators. We assume multiple inputs and outputs; hence, in terms of control theory, we
introduce a new class of MIMO closed loop models. Their target state can be either one of
the user or one of the system; that is, the user controlling the system or the system steering
the user (in our case, to a certain emotional state). However, in the field of ASP, we assume
the latter instead of the former. Recent application areas include Brain Computer Interfaces
(BCI) [486, 637, 683], medical applications (e.g., sedation of patients [249] and rehabilitation
[489]), and, as already mentioned, affective loops [83, 288, 654].
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Since affective computing is approached from a range of sciences (e.g., psychology,
medicine, and computer science), it is hard to provide a taxonomy for research on affective
computing. However, it is feasible to identify the main types of research:

1. Computational modeling founded on theory, without experimental validation.

2. Emotion elicitation and measurement, with or without classification component. This
type of research is conducted in three environments.

(a) controlled laboratory research

(b) semi-controlled research (e.g., as conducted in smart homes)

(c) ambulatory research

3. Development of models, in which one can distinguish:

(a) offline modeling

(b) online, real-time modeling

This division is not as strict as it may appear, often mixtures of these types of research are
employed. However, it should be noted that the vast majority of research on affective com-
puting to date has not applied closed loop models, with McHugo and Lanzetta [83, Chap-
ter 23] and, more recently, Tractinsky [654], Höök [288], and Janssen, Van den Broek, and
Westerink [316] being exceptions. Instead most studies conducted either theoretical com-
putational modeling or emotion elicitation and measurement. Moreover, most research has
been conducted in (semi-)controlled settings. Ambulatory research with loose constraints,
conducted in the real world, is still relatively rare (cq. [269, 270, 272, 316]). Nevertheless, I
take the closed loop model as starting point and direct this monograph to ambulatory, real
world affective computing.

Affective closed loops are important in affective computing applications that measure
affective state and, subsequently, use these measurements to change the behavior of the
systems. This allows computers to become more personal and social, and take into account
how someone feels. Examples of affective closed loops are for instance a computer system
that adapts its interaction dialogue to the level of frustration of its user [328, 576], or a music
player that chooses the music to be played so as to guide the user to a better mood [316].

In essence, such affective closed loops are described by four basic steps (see Figure 1.1):

1. Sensing: Data collection starts at the sensors, where a raw signal is generated that
contains an indication of a person’s affective state. Relevant signals can include both
overt and covert bodily signals, such as facial camera recordings, movements, speech
samples, and biosignals (e.g., ElectroCardioGraphy (ECG) [100, 167, 317, 322, 375, 433,
434, 493, 494, 498, 513, 514, 585, 632, 738] or ElectroMyoGraphy (EMG) [133, 134, 206,
277, 446, 447, 664, 665, 667]).
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1.5 The closed loop model

2. Signal processing + pattern recognition: Exploiting signal features that could con-
tain emotional information; for example, the number of peaks in the ElectroDermal
Activity (EDA) [62, 136, 163, 203, 437, 497, 530, 536, 577] signal is counted, serving as
a measure for arousal. Or the presence and strength of a smile can be derived from
camera recordings, serving as measures for happiness.

3. Influencing algorithm: Given the obtained affective state of the user, a decision is
made as to what is the best way to influence a user. These influencing algorithms need
to incorporate a sense of what affective state the user wants or needs to reach (a goal
state) as well as a model of how the user is likely to react to specific changes of the
actuation system. Both serve to help the system in steering the user’s emotional state.

4. Feedback actuators: The resulting emotion influencing is then undertaken by a set
of actuators. Such actuators can directly communicate with our body, either physical
[160, 265] or chemically [159, 451]. Alternatively, actuators can communicate indirectly
and influence our environment as we sense it either consciously or unconsciously; for
instance, a song can be played or lighting can be activated to create a certain ambiance.

The loop (always) closes when the sensors evaluate whether or not the intended emotional
state has indeed been reached. If the intended emotional state indeed has been reached, the
system will perform a NULL action.

Closed loop systems for ASP put a relatively large amount of emphasis on measure-
ment, signal processing and pattern recognition. In general, two phases in this processing
scheme are most often distinguished:

1. signal processing and

2. classification (e.g., in terms of emotion classes).

These two phases often form the core of the closed loop model, which can be considered
as a signal processing + pattern processing pipeline, as is shown in Figure 1.2. Therefore, I
will now first describe this general processing pipeline, before going back to the domain of
affective computing.

Machines’ learning of affect is essentially a signal processing + pattern recognition
problem. The goal of pattern recognition techniques is to develop an artificial model that
is able to recognize (complex) patterns, in our case emotions, through (statistical) learning
techniques. It follows the classic pattern recognition processing pipeline (see also Figure 1.2
and [445]): a signal is captured and, subsequently, processed by a physical system (e.g.,
a CCD sensor, PC’s audio card, or biosensor). After physical processing the raw signals
provided (e.g., an image, audio track, or biosignal) form the measurement space.

The raw signals are preprocessed (e.g., filtered and artifacts removed), which provides
‘clean’ signals. After synchronization of these ‘clean’ signals, they can be segmented, based
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Figure 1.2: The signal processing + pattern recognition pipeline.

on events or stimuli, which facilitate their further analysis. Next, features need to be ex-
tracted from the signals and the parameters of these features need to be calculated. The
affective signals are processed in the time (e.g., statistical moments [716, Chapter 14]), fre-
quency (e.g., Fourier), time-frequency [51] (e.g., wavelets [143]), or power domain (e.g.,
periodogram and autoregression). In Table 1.1, I provide a brief overview of the signals
most often applied, including their best known features, with reference to their physiologi-
cal source. The set of features and their parameters provide the required pattern space.

The pattern space of calculated parameters from the recorded signals is defined for the
pattern classification process. Next, feature selection / reduction is applied. This improves
the prediction performance (or power) of the emotion classifier, reduces the chances of over-
fitting, provides faster and more cost-effective classifiers, and aids our understanding of the
underlying process that generated the signals [243]. Consequently, the reduced parameter
set eliminates the curse of dimensionality [48], removes redundancy between the signal’s
features and their parameters, and, hence, becomes more generic [68, 142, 708]. So, an op-
timal set feature vector (or more accurately: parameter vector) or reduced pattern space is
generated, which can be fed to the classifier.

The next phase in the signal processing + pattern recognition is the actual classification
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1.5 The closed loop model

of emotions using the optimized feature vectors. Three classes of pattern recognition tech-
niques can be distinguished: statistical pattern recognition (including Artificial Neural Net-
works, ANNs [48, 266, 308]) (for more information, see also Appendix A), template match-
ing (e.g., the work of Manfred Clynes [106–110, 480]), and syntactic or structural match-
ing [75, 215, 216, 229, 655]. In affective computing, template matching, and syntactic or
structural matching are seldom used, most often statistical classification is applied; see also
Table 2.4. Statistical pattern recognition can be employed through either unsupervised or
supervised classification (including reinforcement learning), which I will discuss next.

If a set of predefined classes (or labels or categories) to which the measurement space
belongs is available (e.g., emotional states), the feature vector can be identified as a mem-
ber of a predefined class and given the accompanying label. This approach is, therefore,
baptized as supervised learning / classification (e.g., Fisher’s Linear Discriminant Analy-
sis, LDA and Support Vector Machines, SVM). Such predefined classes are sometimes re-
ferred to as the ground truth. In contrast, unsupervised classification techniques need to
find structure in the data (e.g., Principal Component Analysis, PCA) or detect classes and
class boundaries (e.g., clustering and LDA) without a ground truth (i.e., hitherto unknown
classes) [226]. The classification process is based instead on the similarity of patterns, deter-
mined by a distance/similarity measure and an algorithm to generate the clusters of feature
vectors representing an emotion.

In developing a classifying system, one can choose for either an unsupervised or a
supervised approach [20]. Unsupervised classification does not need a priori knowledge
and often only entails saving the pattern space in a specified format. Supervised classifica-
tion requires the training (or learning) of a classifying system, before the actual classification
can be conducted. Using labeled feature vectors for training, a discriminant function (or net-
work function for ANN) is used to recognize the features and initial classification is realized.
Classification errors can be determined using a certain error criterion and the classification
process can be adapted [48, 170, 457, 648, 691]. This training or learning phase of supervised
classification techniques is depicted by gray boxes in Figure 1.2, which are not applicable to
unsupervised classification techniques.

This machine learning pipeline can be employed for each data source (i.e., modality
such as vision, speech, and biosignals) separately. Alternatively, after the features and their
parameters from all signals have been extracted, they can be merged into one pattern space.
Both of these approaches are frequently applied. In the next chapter, I will discuss the pros
and cons of each of the modalities and provide a review of each of them. Subsequently,
an exhaustive review of biosignal-based affective computing will be provided. However,
first I will end this chapter with sketching the relevance of ASP and affective computing for
computer science and providing an outline of the rest of this monograph.
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1 Introduction

1.6 Three disciplines

The relation between emotions and computer science lays hold of various branches of com-
puter science. The computer science disciplines that most noteworthy lay hold on emotions
are:

1. HCI and related disciplines (e.g., user experience (UX) and interaction design, and
cognitive ergonomics) [24, 264, 315, 545, 687, 735];

2. AI [292, 568], including agents and avatars [35, 38, 71, 217, 242, 297, 444, 686],
robotics [69, 70, 672], and cognitive science and neuroscience [15, 147, 148, 162, 184,
431, 505]; and

3. Health Informatics, including e-health, and, more in general, health technology (in-
cluding mobile technology) [18, 173, 296, 297, 321, 326, 702].

In the next three subsections, I will explain the relation of ASP with each of these three
branches of computer science.

1.6.1 Human-Computer Interaction (HCI)

In the 90s of the previous century, Nass and colleagues [475, 549] touched upon a new level
of HCI: a personal, intimate, and emotional level. Together with the work of Picard [520, 521]
their work positioned affective processes firmly as an essential ingredient of HCI.

The importance of affect for HCI can be well explained by denoting its effects on three
cognitive processes, which are important in HCI context:

1. Attention: Affective processes take hold on several aspects of our cognitive process-
ing [118] and, hence, HCI [695]. One of the most prominent effects of affect lies in
its ability to capture attention. Affective processes have a way of being completely
absorbing. Functionally, they direct and focus our attention on those objects and sit-
uations that have been appraised as important to our needs and goals [695]. This
attention-getting function can be used advantageously in HCI context [594, Chapter
4].

2. Memory: However, it should be noted that such effects also has implications for learn-
ing and memory [49, 64]. Events with an affective load are generally remembered
better than events without such a load, with negative events being dominant over
positive events [549]. Further, affect improves memory for core information, while
undermining memory for background information [396, Chapter 37].

3. Decision making: Affective processes also have their influence on our flexibility and
efficiency of thinking and problem solving [396, Chapter 34]. It has also been shown
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1.6 Three disciplines

that affect can (heavily) influence judgment and decision making [39, 593]. Affective
processes tend to bias thoughts by way of an affect-filter. Thoughts are directed to a
affect-consistent position, which can also increase the risk of distractions.

This triplet of cognitive processes illustrates that a careful consideration of affect in HCI can
be instrumental in creating interfaces that are both efficient and effective as well as enjoyable
and satisfying [594, Chapter 4].

1.6.2 Artificial Intelligence (AI)

Almost half a century ago, the American psychologist Ulric Neisser [478] stated that “Hu-
man thinking begins in an intimate association with emotions and feelings which is never
entirely lost”. Nobel prize winner and recipient of the ACM’s Turing Award, Herbert A. Si-
mon had similar ideas on this topic: “. . . how motivational and emotional controls over cognition
can be incorporated into an information-processing system . . . ’” [611, p. 29].

Nonetheless, in the decades that followed AI aimed at understanding human cognition
without taking emotion into account [568]. Although emotions were sometimes denoted as
important (e.g., [454, 455]), it took until the publication of Picard’s book Affective comput-
ing [521] before they received center stage attention. Even though AI has made it possible
that a computer can beat the world’s best chess players [89] and can win quizzes such as
Jeopardy! [195], the general opinion is that AI has failed [426] (cf. [111, 332]). This is likely
to be (partly) because of a lack of focus on emotions. So, almost 50 years after Ulric Neisser’s
words, with the user more demanding than ever, perhaps now is the time to bring emotions
to the front line of AI research and practice.

1.6.3 Health Informatics

In 1935, Flanders Dunbar noted that the “Scientific study of emotion and of the bodily changes
that accompany diverse emotional experience marks a new era in medicine”. We now know that
many physiological processes that are of profound significance for health can be influenced
by way of emotions (e.g., [183, 305, 326]). For example, it has been shown that emotions
influence our cardiovascular system [276, 400, 493, 495, 496, 589, 659] and, consequently,
can shorten or prolong life [204, 205, 298, 299, 423, 598]. Moreover, emotions also play an
important role with chronic diseases [42, 46], cancer (e.g., coping strategies) [343, 645], and
rehabilitation [489], to mention three. [174, p. vii]. Nevertheless, emotions remained rather
spiritual and human’s health has usually been explained in physical (e.g., injuries) and phys-
iological terms (e.g., bacteria and viruses). It is only since the last decades that it is generally
acknowledged that emotions have their impact on health and illness [326, 493, 692].

Now they have been acknowledged by traditional medicine, emotions are now being
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given a position in health informatics. This shift was accelerated with the general increase in
the need for health informatics that has emerged due to the massive growth of the market for
new systems that improve productivity, cut costs, and support the transition of health care
from hospital to the home [137, 173, 290, 296, 321, 393, 476, 605, 638, 702]. This transition
relies heavily on (ethical) issues such as trust, persuasion, and communication [112] that
have emotion as common denominator. Health informatics is already or will soon be applied
for the support/assistance of independent living, chronic disease management, facilitation
of social support, and to bring the doctor’s office to people’s homes. Par excellence, this is
where health informatics and affective computing blend together.

1.6.4 Three disciplines, one family

The three disciplines described above are not mutually independent. For one thing, health
informatics regularly applies AI techniques [568]; for example, the expert systems Eliza [711]
and MYCIN [608] and their successors for various (sub)domains in medicine (e.g., [173,
677]). Also beyond medicine, expert systems have shown their added value, which is best
illustrated by the fact that the user’s role shifted from controller to supervisor [385]; for
example, recently in high-end automobiles (e.g., Audi, BMW, and Mercedes-Benz). In all
these cases, the systems interact with their users; hence, HCI takes a prominent place. This
all stresses the relations between the three branches of computer science.

Besides the triplet discussed in this section, many other disciplines within computer
science should take emotions into account as well; for example, virtual reality (VR) [86,
474, 488, 616], color processing [539], ambient intelligence (AmI) and ubiquitous computing
(UbiComp) [1, 207, 471, 540, 668, 669, 676], multimedia [21, 595, 741], the World Wide Web
(WWW) [199], and information retrieval (IR) [282, 283, 485]. To conclude, I hope that I have
shown the substantial impact emotions have on many of the disciplines within computer
science.

1.7 Outline

This monograph will be divided into five parts:

I A prologue,

II Basic research on baseline-free ASP that uses statistical moments,

III Basic research on bi-modal ASP that explores various aspects,

IV Three studies affective computing, and

V An epilogue.

20



1.7 Outline

A wide range of statistical techniques will be employed in the various chapters throughout
this monograph. Appendix A will present these techniques in their simplest forms, will
denote their characteristics, and will identify the relations between them.

I. Prologue: This part has started with the current chapter and will continue with:
Chapter 2, the second and last chapter of the prologue. In this chapter I will introduce af-
fective computing and, more in particular, ASP. The three dominant modalities in this field
(i.e., vision, speech, and biosignals) will be introduced. Next, I will provide the first exhaus-
tive review on biosignal-based affective computing. Its advantages and disadvantages will
be denoted as well as the reasons for the rapidly increasing interest in this modality.

II. Baseline-free ASP : This part will include two chapters in which I shall explore the
feasibility of baseline-free ASP (i.e., without normalization in any phase of processing) us-
ing statistical moments:
Chapter 3. This chapter will cover research for which I used dynamic real world stimuli (i.e.,
movie scenes) to induce emotions. The EMG of three facial muscles was recorded, which is
often done to establish a ground truth measurement. In addition, the participants’ EDA was
recorded. EDA is a robust and well documented biosignal that reveals the level of experi-
enced arousal [62, 163].
Chapter 4. The research reported here consisted of analyses on the same data set as Chap-
ter 3. The studies differed in the choice of time windows, which enabled research towards
the impact and usage of this parameter for ASP. Where the analyses in Chapter 3 were ex-
ecuted on the complete signals accompanying the movie scenes, in this study 10 sec. time
windows were used. Moreover, events in the movie scenes were annotated and the partici-
pants’ affective responses that accompanied them were recorded.

III. Bi-modal ASP : Two studies will be presented that employed bi-modal ASP and
deviate only with respect to the stimuli that were used for emotion elicitation. The research
in these two chapters also assessed the influence of emotion representations by analyzing the
obtained data using both the dimensional valence-arousal model [105, 176, 202, 452, 567, 647]
and the six basic emotions [116, 181, 391]. Moreover, the impact of the environment (or con-
text), the personality traits neuroticism and extroversion, and demographics on ASP was
explored.
Chapter 5 will report research that employed a (or perhaps even the) reference set for af-
fective computing : the International Affective Picture System (IAPS). The bi-modal ASP
approach utilized the rare combination of ECG and speech. To the author’s knowledge, this
combination has further only been explored by Kim and colleagues [336, 337, 339, 340].
Chapter 6. In this chapter, I will present a study that is identical to the one in Chapter 5 ex-
cept for the stimuli that have been applied to induce emotions in the participants. The type
and selection of stimuli has recently (again) been shown to be a factor of importance [8]. In
this study the same set of movie fragments was used as in Chapters 3 and 4. This enabled a
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comparison of static versus dynamic stimuli and, as such, assessed their validity.

IV. Towards affective computing: In these three chapters I will explore the feasibility
of affective computing using ASP.
Chapter 7. In this chapter, I will go through the complete signal processing + pattern recog-
nition pipeline (see Figure 1.2), using the data that is also presented in Chapters 3 and 4. In
the quest for an optimal processing pipeline, several signal processing aspects and classifi-
cation methods (see also Appendix A) will be explored. As such, the feasibility of emotion-
aware systems will be assessed.
Chapter 8. In this chapter two studies will be presented that bring us from lab research to
clinical practice. For these studies, I employed only the speech signal since direct biosignals
were considered to be too obtrusive. The studies’ aim was to lay a foundation for the de-
velopment of a Computer-Aided Diagnosis (CAD) of patients with a Post-Traumatic Stress
Disorder (PTSD).
Chapter 9. In this chapter the data from the two studies presented in Chapter 8 will be
fed to the same complete signal processing + pattern recognition pipeline as was already
employed in Chapter 7. This explores the true feasibility of the envisioned emotion-aware
systems, in this case: ASP -based Computer-Aided Diagnosis (CAD) for mental health care.

V. Epilogue: This part consists of a set of guidelines for ASP and a general discussion.
Chapter 10. In this chapter I will present the lessons learned while working on the research
presented in this monograph. Considerations and guidelines for processing affective signals
and classifying the features derived from these signals in terms of emotions will be intro-
duced. These guidelines will indicate possible problems, will provide solutions for them,
and will provide research directives for affective computing. As such, this will perhaps be
the most important chapter of this monograph.
Chapter 11 will consist of seven sections. First, I will look back on the work conducted
and draw some brief conclusions from this. Second, I will place the work presented in this
monograph in a historical perspective. Third, I will weight this monograph’s contribution
to emotion science’s 10 hot topics as has been recently identified [236]. Fourth, I will intro-
duce affective computing’s I/O. Fifth, I will describe three consumer applications that can
be developed here and now! Sixth, I will stretch the horizon and describe two visions of the
future: robot nannies and digital human models. Seventh and last, I will draw some final
conclusions and close the monograph.

22



2
A review of Affective Computing



Abstract

Research on affective computing is dominated by three signal types: vision, speech, and
biosignals. As will be shown through a concise review, the former two have a rather estab-
lished background. The latter signal is less well explored and will, therefore, be exhaustively
reviewed. In total, the chapter will review 85 articles, which have been published on this topic
throughout more than a decade of research. From this structured review one should conclude
that the field suffers from a lack of progress. The main reason for this seems to be the lack of
standards in combination with the field’s intrinsic complexity. This notion will serve as the
foundation for this monograph’s work, as will be shown in the next chapters.

This chapter is based on the fourth section of:

Broek, E. L. van den, Janssen, J.H., Zwaag, M.D. van der, Westerink, J.H.D.M., & Healey, J.A.

Affective Signal Processing (ASP): A user manual. [in preparation]

which has already partially appeared as:

Broek, E.L. van den et al. (2009/2010/2011). Prerequisites for Affective Signal Processing

(ASP) - Parts I-V. In A. Fred, J. Filipe, and H. Gamboa, Proceedings of BioSTEC 2009/2010/2011:

Proceedings of the International Joint Conference on Biomedical Engineering Systems and Technolo-

gies. January, Porto, Portugal / Valencia, Spain / Rome, Italy.



2.1 Introduction

2.1 Introduction

The closed loop model for affective computing (see Figure 1.1) requires an integrated signal
processing and pattern recognition processing pipeline, as was outlined in Section 1.5 of
the previous chapter (see also Figure 1.2). Where the last section in the previous chapter
provided a general outline, this chapter will start with a brief discussion of the three ASP
modalities (i.e., vision, speech, and biosignals) in more detail. In parallel, for both vision-
and speech-based affective computing a concise review will be presented. Subsequently, an
exhaustive review of biosignal-based affective computing will be presented (see Table 2.4),
which is the focus of the current monograph. Results in this subfield will be discussed and
conclusions will be drawn. These provide the ingredients for this monograph’s stipulative
definition of ASP.

2.2 Vision

Vision-based emotion recognition is popular. This has several reasons, among which the
following triplet: i) vision is an intuitively attractive modality, which uses a common, inex-
pensive, non-contact sensor, ii) Ekman and Friesen’s Facial Action Coding System (FACS)
[180] provides an excellent set of markers that can be employed for vision-based emotion
recognition [574], and iii) vision-based emotion recognition is feasible in controlled condi-
tions. Vision-based emotion recogntion can be employed both as a static (i.e., image, either
2D or 3D [574]) and a dynamic technique (i.e., video) [241, 717, 727, 739]. Moreover, one can
choose to conduct markerless recordings or to use markers, which facilitate processing the
images or videos. Most research on affective computing incorporates recordings of the face
but body language analysis has also recently been shown to be a rich source of information
(e.g., movements and gestures) [28, 241, 351, 421, 720].

In the rich body of the literature, it has been shown that thousands of features can be
derived from human faces [727]. These features can be characterized through three dimen-
sions [192]: local features versus the face as a whole, deformation analysis versus motion
extraction, and image versus model based approaches. In practice, the number of features
extracted varies considerably: from 16 [732] to 4320 [727]. In most studies, feature selec-
tion/reduction is applied. The number of subjects that participated in the studies also varies
considerably, from 4 to 210. In contrast, the number of emotion classes between which is dis-
criminated is rather constant throughout the studies (range: 5 − 8) with only one study that
discriminates between 12 emotional states [241]. In line with this, the reported recognition
rates are fairly constant over studies, ranging from 72% to 98%. The early work of Cottrell
and Metcalfe [127] on EMPATH is an exception to this, with their 20% correct classification
between 8 emotions (chance level: 12.5%).

25



2 A review of Affective Computing

Ta
bl

e
2.

1:
R

ev
ie

w
of

12
re

p
re

se
nt

at
iv

e
m

ac
hi

ne
le

ar
ni

ng
st

u
d

ie
s

em
p

lo
yi

ng
co

m
p

u
te

r
vi

si
on

to
re

co
gn

iz
e

em
ot

io
ns

.

so
u

rc
e

ye
ar

si
gn

al
s

#
su

bj
ec

ts
fe

at
u

re
s

se
le

ct
io

n
/

cl
as

si
fi

er
s

ta
rg

et
cl

as
si

fi
ca

ti
on

re
d

u
ct

io
n

[1
27

]
19

91
fa

ce
20

/
5

64
×

64
A

N
N

8
em

ot
io

ns
20

%
[1

85
]

19
95

FA
C

S
8

p
hy

si
ca

l
C

T
K

F
5

em
ot

io
ns

98
%

[1
86

]
19

97
m

od
el

[7
32

]
19

96
m

ou
th

m
ot

io
ns

32
16

7
em

ot
io

ns
65

%
[3

99
]

20
00

FA
C

S
10

0
38

P
C

A
,L

D
A

,H
M

M
3-

9
ac

ti
on

u
ni

ts
>

80
%

[1
15

]
20

03
m

ot
io

n
u

ni
ts

5/
53

12
N

B
7

em
ot

io
ns

73
%

/
83

%
[7

43
]

20
05

FA
C

S
24

B
N

6
em

ot
io

ns
72

%
[5

10
]

20
06

FA
C

S
19

24
ru

le
s

P
ar

ti
cl

e
fi

lt
er

in
g

30
ac

ti
on

u
ni

ts
87

%
[4

08
]

20
06

23
ex

p
re

ss
io

ns
10

0
90

0
A

d
aB

oo
st

L
D

A
,S

V
M

7
em

ot
io

ns
93

%
[2

40
]

20
07

he
ad

4
14

8
B

FS
B

N
6

em
ot

io
ns

75
%

bo
d

y
14

0
90

%
he

ad
&

bo
d

y
28

8
80

%
-9

4%
[2

41
]

20
09

he
ad

,h
an

d
s,

&
10

15
0/

17
2

P
C

A
,H

M
M

,E
M

D
T,

B
N

,S
V

M
,

12
em

ot
io

ns
83

%
/

85
%

sc
ho

u
ld

er
s

A
N

N
,A

d
aB

oo
st

[5
72

]
20

10
fa

ce
41

/
52

84
G

P,
gr

id
SV

M
6

em
ot

io
ns

92
%

/
95

%
[7

27
]

20
11

fa
ce

21
0

43
20

G
A

,L
P

P
A

N
N

,S
V

M
6

em
ot

io
ns

65
%

-9
7%

Le
ge

nd
:F

A
C

S:
Fa

ci
al

A
ct

io
n

C
od

in
g

Sy
st

em
[1

80
];

A
d

aB
oo

st
:A

d
ap

ti
ve

B
oo

st
in

g;
A

N
N

:A
rt

ifi
ci

al
N

eu
ra

lN
et

w
or

k;
B

N
:

B
ay

es
ia

n
N

et
w

or
k;

B
FS

:B
es

tF
ir

st
Se

ar
ch

;C
T

FK
:C

on
ti

nu
ou

s
Ti

m
e

K
al

m
an

Fi
lt

er
;D

T:
D

ec
is

io
n

Tr
ee

;E
M

:E
xp

ec
ta

ti
on

Ű
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2.3 Speech

Although vision-based facial expression analysis provides (reasonably) good results
nowadays, it is complex. Physiognomies of faces vary considerably between individuals
due to age, ethnicity, gender, facial hair, cosmetic products, and occluding objects (e.g.,
glasses and hair). Furthermore, a face can appear to be distinct from itself due to pose
and/or lighting changes. For a more elaborate discussion on these issues, I refer to the
surveys of Fasel and Luettin [192] and Tian, Kanade, and Cohn [652]. For a comparative
evaluation of 2D versus 3D FACS-based emotion recognition, I refer to the recent study of
Savran, Sankur, and Bilge [574]. In sum, in highly controlled environments, vision-based
emotion recognition works properly; however, when constraints are loosened, it might
fail [192, 652, 680, 717]. This makes it a powerful but also fragile affective signal.

2.3 Speech

Although speech-based emotion recognition shows many parallels with vision-based emo-
tion recognition, it also has some distinct characteristics; see also Tables 2.2 and 2.3. A promi-
nent difference is that speech-based emotion recognition has been applied on both healthy
subjects and on subjects with varying disorders (e.g., [677]). Research on speech-based emo-
tion recognition with people with disorders has revealed a lot of information on emotional
speech.

For decades audio-based emotion recognition has been conducted with a limited set
of features (≤ 64; see also Table 2.3), without the use of any feature selection or reduc-
tion [579, 696]. During the last decade, more often a brute force strategy was employed
[590], using hundreds or even thousands of features (e.g., see [644, 725]). In parallel with the
explosion of the number of features, feature selection/reduction strategies claimed their po-
sition. Machine’s recognition rate of emotional speech ranges from Banse and Scherer [27],
who report 25%/40% correct classification of 14 emotions, to Wu, Falk, and Chan [725], who
report 87%/92% correct classification of 7 emotions. The latter results, however, are in con-
trast with the results on a structured benchmark reported by Schuller, Batliner, Steidl, and
Seppi [590] at the InterSpeech 2009 emotion challenge: 66%− 71% (2 classes) and 38%− 44%

(5 classes).

Similarly to vision-based approaches, audio-based emotion recognition suffers from
environmental noise (e.g., from a radio or conversations in the background). Moreover,
audio recordings are influenced by acoustic characteristics of environments; using templates
for distinct environments could relieve this burden. Moreover, recording of sound could also
cancel out some of the noise, although such an approach is in itself already very challenging.
Similarly to vision-based emotion recognition, audio-based emotion recognition can be best
employed in a controlled setting, as is the case in most studies.
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Table 2.2: Speech signal analysis: A sample from history.

Throughout the previous century, extensive investigations have been conducted on the func-
tional anatomy of the muscles of the larynx [281, 386]. It was shown that when phonation
starts, an increase in electrical activity emerges in the laryngeal muscles. Also with respira-
tion, slight electrical activity was found in the laryngeal muscles. These processes are highly
complex as speech is an act of large motor complexity, requiring the activity of over 100
muscles [386]. These studies helped to understand the mechanisms of the larynx during
phonation; cf. [653]. Moreover, algorithms were developed to extract features (and their
parameters) from the human voice. This aided further research towards the mapping of
physical features, such as frequency, power, and time, on their psychological counterparts,
pitch, loudness, and duration [114].

In the current research, the physical features are assessed for one specific cause: stress de-
tection. One of the promising features for voice-induced stress detection is the fundamental
frequency (F0), which is a core feature in this study. The F0 of speech is defined as the num-
ber of openings and closings of the vocal folds within a certain time window, which occurs
in a cyclic manner. These cycles are systematically reflected in the electrical impedance of
the muscles of the larynx. In particular, the cricothyroid muscle has been shown to have a
direct relation with all major F0 features [117]. In addition, it should be noted that F0 has
a relation with another, very important, muscle: the heart. It was shown that the F0 of a
sustained vowel is modulated over a time period equal to that of the speaker’s heart cycle,
illustrating its ability to express one’s emotional state [501].

Through recording of speech signals, their features (e.g., amplitude and F0) can be conve-
niently determined. This has the advantage that no obtrusive measurement is necessary.
Only a microphone, an amplifier, and a recording device are needed. Subsequently, for the
determination of F0, appropriate filters (either hardware or software) can increase the rela-
tive amplitude of the lowest frequencies and reduce the high and mid-frequency energy in
the signal. The resulting signal contains little energy above the first harmonic. In practice,
the energy above the first harmonic is filtered, in a last phase of processing.

Harris and Weiss [263] were the first to apply Fourier analysis to compute the F0 from the
speech signal. Some alternatives for this approach have been presented in the literature; for
example, wavelets [712]. However, the use of Fourier analysis has become the dominant ap-
proach. Consequently, various modifications on the original work of Harris and Weiss [263]
have been applied and various software and hardware pitch extractors were introduced
throughout the second half of the 20th century (cf. [168] and [537]). For the current study, we
adopted the approach of Boersma [53] to determine the F0 of speech.
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2 A review of Affective Computing

2.4 Biosignals

Physiological signals and their relation to cognition and emotion have been topics of re-
search for over two centuries [311, 313, 366]. In particular in the previous century interest
from science and, subsequently, industry rose on the relation between physiological signals
and emotion. A broad range of physiological signals are used for emotion recognition, see
also Table 1.1. The choice of the signal(s) depends heavily on both the area of application
(e.g., can it be integrated into another device or not) and on the information that needs to be
extracted from it. In practice, most physiological signals are derived through non-invasive
methods and, as such, are indirect measures (cf. [212, 213]). Therefore, often a delay between
the actual physiological origin and the recorded change in the physiological signal has to be
taken into account. Moreover, physiological signals differ significantly between individuals.
Consequently, personalized approaches have been shown to have the best performance (cf.
[338]).

Biosensors can also be unreliable due to movement artifacts and differences in bodily
position [269, 270, 272, 466]. Even more problematic is that people’s physiology is influenced
by internal sources (e.g., a thought), a broad range of possible external factors (e.g., a signal
outside [198]), and physical activity [78, 196]. The latter is illustrated in Figure 2.1. This
makes affective signals inherently noisy (cf. Figure 2.1), which is most prominent in real
world, ambulatory research [151, 269, 270, 272, 466, 632, 674]. To deal with this these factors
should be measured and modeled as far as is possible (cf. [383]). Another issue is that the
sensors have to be directly attached to human skin and, consequently, can be experienced
as obtrusive (e.g., as is even still the case with state-of-the-art facial EMG [378, 664]), which
can complicate their integration into real-world consumer applications. This has been the
traditional burden for the application of ASP in end consumer products. However, with the
rapid development of wireless networks, miniaturized sensors, body area networks, and re-
configurable biosignal recording devices (e.g., [3, 122, 135, 381, 460, 610, 713]), this traditional
disadvantage is quickly vanishing [98, 121, 321, 403, 508, 571, 658, 702] (cf. [642]). Physiolog-
ical signal recording apparatus has already been integrated in tools such as helmets, beds,
music players, gaming consoles, or clothes [10, 101]. Consequently, physiological recordings
are gaining in popularity and should be considered as promising.

2.4.1 A review

Few comprehensive reviews have appeared on affective computing using physiological sig-
nals, when compared with the other modalities. This also illustrates that research on affec-
tive computing using this modality is rather new. It started with the publication of Picard’s
book Affective computing in 1997. At that moment, audio-based emotion recognition, in
particular speech-based emotion recognition had already been employed for decades. More

30



2.4 Biosignals

0 5 10 15 20 25 30
1000

2000

3000

4000

E
D

A

EDA and HR with Activity

0 5 10 15 20 25 30
60

80

100

120

H
R

0 5 10 15 20 25 30

2

3

4

Minutes

A
ct

iv
ity

Figure 2.1: Recordings of Heart Rate (HR), ElectroDermal Activity (EDA), and a person’s
activity for a period of 30 minutes, in a real world setting.

recent, but still 10 years before the publication of Picard’s book, vision-based emotion recog-
nition was being employed. Even early works on multimodal emotion recognition had al-
ready been published, such as Tartter [640], although it should be mentioned that his classi-
fiers were humans. Recently, a concise review appeared [352], which briefly wraps up some
key notions of affective computing. They report 92% correct classification rate as best result,
using (only) 4 signals and discriminating between 4 emotions. They pose that “A recogni-
tion accuracy of over 80% on the average seems to be acceptable for realistic applications” (p. 153).
This claim is a rather bold statement, as in other (traditional) application areas of pattern
recognition it has been shown that this is not the case. With most other pattern recognition
problems, recognition rates of over 90% (and often over 95%) are achieved [308]; for exam-
ple, multimedia analysis [324], optical character recognition (OCR) [461], and handwriting
recognition [528], writer identification [73], and face recognition [65]. This illustrates the
complex nature of affective computing as well as the need for standardization and bench-

31



2 A review of Affective Computing

marks in affective computing.

Table 2.4 presents an extensive review of the research conducted in the biosignal branch
of affective computing. One of the earliest works that should not remain unmentioned is
that of Sinha and Parsons [613] who applied facial EMG on 27 subjects, extracted 18 fea-
tures from this and achieved an 85% correct classification rate of 2 emotions, using a linear
discriminant analysis (LDA). In 2001, Picard, Vyzas, and Healey [524] published their pi-
oneering study with 81% correct classification of 8 emotions, also using LDA. Their study
included multiple physiological signals but only one subject to which the complete signal
processing and pattern recognition pipeline (see Figure 1.2) was tailored. In the decade that
followed on this study, both the classification rate of Picard et al. [524] and the number of
emotions between which they discriminated was not successfully challenged. An exception
to this is the work of Kim and André [338] who reported 70% correct classification of 4 emo-
tions using a generic classifier and 95% correct classification when employing a personalized
classifier (see also [340]). This result supports the idea that one of the reasons the recognition
rate by Picard et al. [524] could not be improved was that it used a single person classifier
instead of a generic model. Most studies discriminated between 2 − 4 emotion (categories)
and achieved a correct classification in the range of 60% to over 90%; see Table 2.4.

More than anything else, Table 2.4 illustrates the variety in research on affective com-
puting. Both the type and number of signals employed varies considerably. Distinct stud-
ies are hard to compare because they are executed in different settings, ranging from con-
trolled lab studies to real-world, ambulatory testing. Also, the number of people partici-
pating varies from 1 to 50, although studies including > 20 participants are relatively rare.
Moreover, features and parameters determined through ASP vary from 3 to 225. Last, only
half of the studies applied feature selection/reduction, where this would generally be advis-
able. Moreover, a broad plethora of classifiers is used. The characteristics of the categories
among which has to be discriminated is different from most other classification problems.
The emotion classes used are typically ill defined, which makes it hard to compare studies.
Moreover, the type and number of emotion categories (i.e., the classes) to be discriminated
varies considerably (from 2 to 8) as well as the methods of elicitation. Consequently, al-
though these are small numbers in terms of pattern recognition and machine learning, the
results are not as good as those of other classification problems. With affective computing
recognition rates of 60% − 80% are common, where in most other pattern recognition prob-
lems, recognition rates of >> 80% and often > 95% are frequently reported. This illustrates
the complex nature of affective computing and the need to consider prerequisites for ASP.
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2.4 Biosignals

2.4.2 Time for a change

Taken together, implicit messages of emotion are expressed through bodily (e.g., move-
ments) and facial expressions [131, 192, 511, 652, 739] and by way of speech signal char-
acteristics (e.g., intonation) [131, 182, 511, 590, 739]. In line with Picard [521, 524], I pose
that this duo is not complete and physiological responses should be added to it to complete
the pallet of affective signals. Although, such responses are hard to notice by humans, as
is the case with various facial muscles [643]. In contrast, computing devices augmented by
biosensors can record such signals, as has been shown in the last decade of research; see
Table 2.4.

Biosignals have one significant advantage compared to visual, movement, and speech
signals, they are free from social masking [643]. This is in sharp contrast to visual appearance
and speech, which can all be (conveniently) manipulated to some extent [643], in particular
by trained individuals such as actors. Moreover, an important advantage of biosignals over
either speech or vision is that you get a continuous signal, as opposed to speech that is
only of use when the person is speaking or facial expressions that tend to be sparse when
people are doing, for example, computer work. So, biosignals enable communication, where
traditional channels (i.e., vision and speech [148, 184]) are absent or fail (cf. [617]). So, par
excellence, biosignals can augment HCI as well as human-human interaction [315].

To bring biosignals as affective signals from research to practice, however, significant
improvements are needed. Although it is very possible that some closed loop applications
function satisfactorily in practice, in general either the number of emotional states recog-
nized is rather limited (often 2 to 4) or the ultimate classification accuracy is relatively low
(often below 80%). So, there is significant room and need for improvement to obtain the
high accuracy levels for the classification of multiple emotional states, which is necessary
for the construction of smooth affective closed loops.

In the next three parts of this monograph, Parts II, III, and IV, I set out a series of
studies to systematically review the options for improvement that are still open for ASP.
These studies all address issues that are crucial for the development of closed loop ASP,
as presented in Section 1.5. In particular, they are of importance for its signal processing +
pattern recognition pipeline. These three parts will be succeeded by an epilogue in which
the first chapter presents guidelines for each of these two steps in the processing pipeline.
This monograph will now first continue with two chapters that employ four biosignals (i.e.,
3× EMG and EDA), uses dynamic stimuli (i.e., movie fragments) to induce emotions, and
explores the importance of the length of time windows for ASP.
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Abstract

To improve Human-Computer Interaction (HCI), computers need to be able to recognize and
respond properly to their user’s emotional state. This is a fundamental application of affective
computing, which relates to, arises from, or deliberately influences emotion. As a first step to
a system that recognize emotions of individual users, this research focused on how emotional
experiences are expressed in six parameters (i.e., mean, absolute deviation, standard devia-
tion, variance, skewness, and kurtosis) of not baseline-corrected physiological measurements
of the ElectroDermal Activity (EDA) and of three ElectroMyoGraphy (EMG) signals: frontalis
(EMG1), corrugator supercilii (EMG2), and zygomaticus major (EMG3). Twenty-four partic-
ipants were asked to watch film scenes of 120 seconds, which they then rated. These ratings
enabled us to distinguish four classes of emotions: negative, positive, mixed, and neutral.
The skewness and kurtosis of the EDA, the skewness of the EMG2, and four parameters of
EMG3, discriminate between the four emotion classes and explained 36.8% − 61.8% of the
variance between the emotion four classes. This, despite the coarse time windows that were
used. Moreover, rapid processing of the signals proved to be possible. This enables tailored
HCI facilitated by an emotional awareness of systems.
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3.1 Introduction

3.1 Introduction

Computers are experienced by their users as cold hearted (i.e., “marked by lack of sympa-
thy, interest, or sensitivity” [448]). However, ’during the past decade rapid advances in spo-
ken language technology, natural language processing, dialog modeling, multi-modal inter-
faces, animated character design, and mobile applications all have stimulated interest in a
new class of conversational interfaces’ [504]. The progress made in this broad range of re-
search and technology enables the rapid computation and modeling of empathy for human-
computer interaction (HCI) purposes. The latter is of importance since conversation is, apart
from being an information exchange, a social activity, which is inherently enforcing [504].
Futurists envision embodied, social artificial systems that interact in a natural manner with
us. Such systems need to sense its user’s emotional state.

Empathic artificial systems can, for example, prevent user frustration in HCI. Users fre-
quently feel frustrated by various causes; for example, error messages, timed out/dropped/
refused connections, freezes, long download time, and missing/ hard-to-find features [94].
Picard [518] posed the prevention of user frustration as one of the main goals in HCI. When
prevention is not sufficient, online detection and reduction of frustration is needed. Biosig-
nals are useful in detecting frustration [521]. According to Hone [286], an (embodied) af-
fective agent, using techniques of active listening and emotion-awareness could reduce user
frustration.

The current chapter discusses the emotions people can experience and their expres-
sion in and detection through ASP, in Section 3.2 and Section 3.3. Next, in Section 3.4,
affective wearables are introduced in which the proposed apparatus for the measurement
of the biosignals can be embedded. In Section 3.5, we present an experiment into the appro-
priateness of various statistical measures derived from biosignals, followed by a reduction
of the data in Section 3.6. The experimental results are described in Section 3.7. The chapter
ends with Section 3.8 in which the results are discussed, limitations are denoted, and future
research is described.

3.2 Emotion

Despite the complexity of the concept of emotion, most researchers agree that emotions are
acute affective states that exist for a relatively short period of time and are related to a par-
ticular event, object, or action [502, 521]. In relation with physiology, emotions are predom-
inantly described as points in a two-dimensional space of affective valence and arousal, in
which valence represents overall pleasantness of emotional experiences ranging from nega-
tive to positive, while arousal represents the intensity level of emotion, ranging from calm to
excited [372, 647]. This allows us to tell the difference between 4 rough classes of emotions,
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when differentiated between both high and low valence and high and low arousal. Some
researchers even differentiate between nine classes by including a neutral section on both
the valence and arousal axes. However, in principle, any number of classes can be defined,
where the valence and arousal axes are not necessarily divided with the same precision [61].

The valence-arousal model, however, does not account for mixed emotions: positive
and negative at the same moment. In order to be able to cope with mixed emotions, Larsen
et al. [380] and Konijn and Hoorn [357] suggest that valence should be unipolar instead of
bipolar. When valence is rated on two scales, one for the intensity of positive affect and
one for the intensity of negative affect, mixed emotions, in the sense of both positive and
negative emotions, will show. As an extension to the valence-arousal model, a unipolar va-
lence axis, with separated positive and negative axes, might allow for a better discrimination
between different emotions.

In the current research, we only explored the valence axis. The reason is that the sim-
plest differentiation of emotions is a differentiation between positive and negative emotions.
In most cases of HCI, this is sufficient to improve the dialog between user and computer;
for example, when a user has a negative emotion, the computer can adapt its dialog to that,
depending on the context.

3.3 Measures of affect

The roots in research toward psychophysiological aspects of emotions lay in Darwin’s book
‘The expression of emotions in man and animals’, which he wrote in 1872. The overall assump-
tion is that emotion arouses the autonomic nervous system (ANS), which alters the physio-
logical state. This is expressed in various physiological measures, often stimulated through
the ANS; for example, heart rate, blood pressure, respiration rate, ElectroDermal Activity
(EDA), and muscle activity (see Table 1.1). The main advantage of using autonomic phys-
iological measures is that autonomic variables are regulated by the ANS, which controls
functions outside the individual’s conscious control [85]. In this research, we focused on
how emotional experiences, rated to their positive and negative affect, are expressed in four
biosignals:

• EDA (also termed GSR) [62], which is a measure of the conductivity of the skin: arousal
of the ANS influences sweat glands to produce more sweat; consequently, skin conduc-
tivity increases. EDA was chosen because it is an autonomic variable; hence, it cannot
be controlled by the user [136].

• Three EMG signals: frontalis, corrugator supercilii, and zygomaticus major [664]. EMG
measures muscle activity of a certain muscle. These measures were chosen because a
great deal of emotional expression is located in the face [380, 592, 664]. Facial EMG
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is related to affective valence; however, the type of relation depends strongly on the
muscle that is measured [133, Chapter 10], [85, Chapter 12], [396, Chapter 9, 1st ed.;
Chapter 11]. The corrugator supercilii, which causes a frown when activated, increases
linearly with a decrease in valence, while the zygomaticus major, which is responsible
for smiling when activated, increases with an increase in valence [373, 592, 664]. The
EMGs of these two muscles are known to discriminate best between emotions; see [396,
Chapter 9, 1st ed.] for a concise review. The frontalis is a measure for attention (and
fatigue) and, hence, is not expected to discriminate between emotions [133, Chapter
10].

These measures have extensively proven their use to detect emotional experiences in
laboratory settings, mostly in group-averaged, baseline-corrected paradigms. In order to
make them useful for emotion-aware systems, three aspects will have to change:

1. the measurements will have to be done in a less obtrusive manner;

2. the interpretation of the signals will have to be meaningful on an individual (not a
group-averaged) level; and

3. robust signal interpretation algorithms will have to be developed that are baseline-free
or incorporate automatic (non-manual) baseline correction.

The first issue will be dealt with in the next paragraph, where we will discuss the advent of
unobtrusive affective wearables. Our focus for the remainder of the chapter is on the search
for robust signal interpretation algorithms that do not need a manual baseline correction.

3.4 Affective wearables

Using the EDA and EMG signals, a system will be able to determine the emotional state of
its user, certainly if that system also possesses a user-profile. Affective wearables will facil-
itate such a system in monitoring the user in an unobtrusive manner. Direct physiological
measures are often considered to be obtrusive to the user, but this is not necessarily true. In
the field of affective computing, some efforts have been made to design unobtrusive mea-
surement technology: affective wearables. Picard [521] defines an affective wearable as “a
wearable system equipped with sensors and tools which enables recognition of its wearer’s affective
patterns”. Affective wearables will become smaller in time, due to improved design and
smaller technology components. Affective wearables could make a huge difference in user
acceptance of direct physiological measures, especially when hidden in daily used tools and
objects.

The acceptance of direct physiological measurements is of great importance since in-
direct physiological measurements are much more subject to noise. Indirect physiological
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measurements (e.g., through speech analysis [677]) have been applied in controlled settings
such as telepsychiatry [279] and evaluation of therapy effectiveness [677]. However, outside
such controlled conditions these measures have not proven to be reliable.

Measurement of biosignals have already been embedded into wearable tools; for ex-
ample, Picard and Scheirer [523] designed the ’Galvactivator’, a glove that detects the skin
conductivity and maps its values into a LED display. In an overview of previous work
of the Affective computing Research Group at MIT, Picard [522] describes several affective
wearables. One affective wearable that is of interest in this research is a pair of expression
glasses. The pair of expression glasses sense facial movements, which are recognized as
affective patterns.

3.5 Experiment

The goal of this experiment was to enable a search for robust (e.g., baseline-free) algorithms
for use in future emotional awareness systems. These should interpret positive or negative
emotions from biosignals.

3.5.1 Participants

In the experiment, 24 Dutch subjects participated (average age: 43 years). Twenty of
the participants were females, since we expected clearer facial emotion expressions from
them [66, 361]. As we could not find 4 more females, we replaced them by men in order
to be able to maintain the counterbalancing in the experiment design, as will be depicted
in Section 3.5.3. All subjects had been invited from a volunteer subjects database, and were
rewarded with a small gift for their participation. All subjects signed an informed consent
form.

3.5.2 Equipment and materials

We selected 16 film fragments for their emotional content. Most were adopted from the set
of Gross and Levenson [235, 237] and are known to elicit one unique emotion from vari-
ous viewers: Silence of the Lambs (198 seconds), When Harry met Sally (149 seconds), The
Champ (153 seconds), Sea of Love (9 seconds), Cry Freedom (142 seconds), The Shining (80

seconds), Pink Flamingoes (30 seconds). We used these fragments in English-spoken ver-
sions with Dutch subtitles, as is usual on Dutch TV and in Dutch cinemas. Since we were
not able to find enough material of Gross and Levenson [235, 237] with Dutch subtitles of
acceptable quality, we added a number of similar fragments to the set: Jackass the Movie -
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paper-cut scene (51 seconds), Static TV color bars (120 seconds), The Bear - intro (120 sec-
onds), Sweet Home Alabama - wedding scene (121 seconds), Tarzan - orchestra scene (133

seconds), Abstract Shapes - screen saver (120 seconds), Lion King - dad’s dead (117 seconds);
Nature documentary (120 seconds), Final Destination - side-walk café scene (52 seconds). An
overview of all film fragments used in this study is provided in Table 3.1. The duration of
the 16 film fragments ranged from 9 seconds to 4 minutes. For the fragments with dura-
tions shorter than 120 seconds, a plain blue screen was added to make a total of 120 seconds,
a minimum duration needed for assessing both the low and high frequency HRV compo-
nents [44]. We displayed the film fragments on a large 42′′ 16 : 9 flat panel screen attached to
the wall. The subjects viewed the fragments from a comfortable chair at a distance of about
2 meters.

We used a TMS International Porti5 − 16/ASD system for the psychophysiological
measurements. The system was connected to a computer with TMS Portilab software∗.
Its ground electrode was attached to the subject’s right-hand side lower chest area. We
performed 3 EMG measurements: at the right-hand corrugator supercilii muscle, the left-
hand zygomaticus major muscle, and the frontalis muscle above the left eye (see Figure 3.1).
The detail muscle positions were found by touching the contracting muscles, in line with

∗URL TMS Portilab software: http://www.tmsi.com/

Table 3.1: The eight film scenes with the average ratings with the accompanying standard
deviations (between brackets) given by subjects (n = 24) on both experienced negative and
positive feelings. Four emotion classes are founded: neutral, mixed, positive, and negative,
based on the latter two dimensions. The top eight film scenes were selected for further
analysis.

Film scene Positive Negative Emotion category

Color bars 1.60 (1.43) 2.20 (2.04) neutral
Abstract figures 1.20 (0.70) 2.10 (1.94) neutral
The bear 5.15 (1.50) 1.65 (0.88) positive
Tarzan 5.10 (1.17) 1.50 (0.95) positive
Final destination 3.11 (1.70) 4.32 (1.63) mixed
Lion King 3.85 (2.21) 3.65 (1.93) mixed
Cry freedom 1.95 (1.54) 6.25 (1.07) negative
Pink flamingos 1.75 (1.20) 5.60 (1.54) negative
Silence of the lambs 2.30 (1.38) 3.85 (1.73) neutral
When Harry met Sally 4.60 (1.47) 1.80 (1.15) positive
The champ 2.65 (1.46) 4.35 (1.05) mixed
Jackass the movie 1.85 (1.57) 5.95 (1.47) negative
Sea of love 2.15 (1.31) 3.90 (1.74) neutral
Sweet home Alabama 4.35 (1.66) 1.70 (1.26) positive
The shining 2.65 (1.39) 3.55 (1.47) neutral
Nature documentary 4.50 (2.04) 1.45 (1.28) positive
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3 Statistical moments as signal features

Lapatki, Stegeman, and Jonas’ [377] recommendations. Subsequently, for each measure-
ment we placed 2 electrodes along the muscle (see Figure 3.1), respecting Fridlund and Ca-
cioppo’s [206] “Guidelines for human electromyographic research”. The EMG signals were
first high-pass filtered at 20 Hz; then, the signal was rectified by taking the absolute differ-
ence of the two electrodes and finally a central moving average filter was applied with a
time constant of 0.2 seconds.

Two active skin conductivity electrodes were attached to the subject’s right hand: on
the inside distal phalanges of the index and ring fingers (see Figure 3.1). We calculated
skin conductivity from the measured signal by central moving average filtering with a time
constant of about 2 seconds; thus, capturing EDA signal variations reliably in first order [62];
see also Table 1.1 in Chapter 1. ECG was also measured with the intention of investigating
heart rate variability measures, but since the TMS program failed to actually record the data
for many participants, these data were not analyzed.

Figure 3.1: Left: The points indicate the electrodes that were placed on the face of the partici-
pants to determine the EMG signals. The EMG signals of the frontalis, corrugator supercilii,
and zygomaticus major were respectively measured through electrodes 1 − 2, 3 − 4, and
5−6. Right: The points at which the electrodes were placed on the hands of the participants
to determine the EDA signal.
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3.6 Data reduction

3.5.3 Procedure

After the subject was seated, the electrodes were attached to their chest, their fingers, and
their face. Then, we checked the recording equipment and adjusted it if necessary. After a 5-
minute rest period, the 16 video fragments were presented to the subject in pseudo-random
order, so that positive and negative scenes were spread evenly over the session. Twelve sub-
jects received that same pseudo-random order, though each started with a different scene in
the list. The remaining 12 subjects were given the reverse pseudo-random order, again each
starting with a different scene. We presented a plain blue screen for 120 seconds between
two fragments, to allow the effects of the previous film fragment to fade out.

The entire viewing session lasted slightly over one hour, after which we removed the
electrodes. Next, the subjects were asked to answer a few questions regarding each of the
film fragments viewed. We deliberately did not ask these questions directly after each in-
dividual film fragment, since this would direct the participants’ attention to the questioned
items in all subsequent viewing, which would have given the rest of the viewing session an
unnatural character. In order to help them recall their feelings during the presentation of the
film fragments, the participants were sequentially provided with representative print-outs
of each fragment. For each film fragment, they were asked to rate, on a 7-point Likert scale,
the intensity of positive feelings they had had while watching it, as well as the intensity of
negative feelings, and the amount of arousal. With these three axes we expected to include
the both axes of Russel’s valence-arousal model [372, 566, 647], as well as the possibility of
mixed emotions [79, 92, 357, 379]. As we needed to present separate scales for positive and
negative feelings in order to capture possible mixed emotions, we could not deploy the Self
Assessment Mannequin (SAM) [372].

3.6 Data reduction

For each video fragment, we calculated the average positive rating as well as the average
negative rating. Based on these averages, we could classify the fragments into 4 emotion
classes: neutral, mixed, positive, and negative. In order to obtain an even distribution over
emotion classes, we selected two fragments in each emotion category for further analysis.
In each category, we chose the fragments with a duration closest to 120 seconds, so that
time effects could more easily be compared (see Table 3.1). This resulted in the following
set for further analysis: Color Bars and Abstract Figures (both ’neutral’, with both ratings
below 2.5), The Bear and Tarzan (both ’positive’, with positive ratings above 5.0 and negative
ratings below 2.0), Final Destination and Lion King (both ’mixed’, with both positive and
negative ratings above 3.0), and Cry Freedom and Pink Flamingoes (both ’negative’, with
negative ratings above 5.0 and positive ratings below 2.0).
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3 Statistical moments as signal features

Not all biosignals data were fit for analysis: the EMG signals of 2 subjects were cor-
rupted, probably due to loose contacts, and we decided not to include these data sets in
further analyses. Moreover, for the same reason, the recordings of one subject, during the
film scene of the “Pink flamingos”, were skipped. For the remaining 22 subjects, we pro-
cessed the 4 biosignals to obtain the following measures: mean, absolute deviation, standard
deviation, variance, skewness, and kurtosis.

Mean, absolute deviation and standard deviation are well-known dimensional quanti-
ties with the same units as the measured signal. Variance is also a frequently used parameter.
The skewness and kurtosis, however, are expressed as non-dimensional quantities; see [197]
for their introduction. [318] provide a comprehensive overview and a comparison of the
skewness and kurtosis measures for both normal and non-normal distributed samples. In
this overview, they state that it is suggested that “skewness and kurtosis should be viewed as
’vague concepts’, which can be formalized in many ways. Accordingly, many different definitions
have been proposed.” For this research, we adopted the following descriptions: Skewness
characterizes the degree of asymmetry of a distribution around its mean and kurtosis char-
acterizes the relative peakedness and tail weight of a distribution.

Following the literature [81, 318, 534, 710], we define skewness and kurtosis for sam-
ples {x1, x2, . . . , xN} as:

Skewness(x1, x2, . . . , xN) =
1

N

N
∑

j=1

[

xj − x

σ

]3

(3.1)

and

Kurtosis(x1, x2, . . . , xN) =
1

N

N
∑

j=1

[

xj − x

σ

]4

− 3 (3.2)

with σ being the standard deviation and x being the mean of the data set. For a normal
distribution, the third and fourth central moments are respectively 0 and 3 [197, 318]. Since
our objective was to describe both skewness and kurtosis relative to that of a normal distri-
bution, a correction of −3 was applied for kurtosis, as is often done.

3.7 Results

For each of the six statistical parameters, for each film fragment, and for each subject, the
complete EDA and EMG signals were processed over the last 120 seconds of the film frag-
ment. The duration of 120 seconds was chosen because it was available for the majority of
the scenes. Two film fragments were shorter than that, and for them we included measure-
ments taken during the blue screen following it in order to add up to a section of 120 seconds
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as well (see also Section 3.5.2). Note that we deliberately did not correct these values for their
baseline, because - although useful in academic research - the baseline-correction procedure
is not easily applicable in future emotionally aware systems.

For each parameter of each physiological measure, a repeated measures ANOVA was
conducted, with the four emotions, each measured with two film scenes, as within-subject
factors. So, a total of 24 (i.e., 4 × 6) repeated measures ANOVAs were conducted. As mea-
sure of effect size partial eta squared (η2) is reported, which indicates the proportion of
variance accounted for (i.e., a generalization of r/r2 and R/R2 in correlation/regression
analysis) [211, 737]. The classification of the film scenes into the four emotion classes was
based on the participants’ ratings as provided in Table 3.1, which were perfectly in line with
the findings reported by Gross and Levenson [235, 237].

The EMG of the frontalis did not provide a significant discrimination between the 4

emotion classes on any of the statistical parameters. Of all physiological measures, the zy-
gomaticus major signal is the most discriminative biosignal (see Table 3.2). The mean, abso-
lute deviation, standard deviation and variance calculated over the zygomaticus major EMG
signal showed strong significant effects of emotions. Significant effects did also show in the
skewness and kurtosis of the EDA signal and the skewness of the corrugator supercilii EMG
signal (Table 3.2). For the skewness of the EMG zygomaticus signal a trend was present over
the four emotions (F (3, 18) = 3.013, p = .057), which explained rather a lot of the variance
present between the 4 emotion classes (η2 = .334).

3.8 Discussion

3.8.1 Comparison with the literature

Most 120 seconds averaged values of the biosignals yielded no significant effects of emotion
class, in contrast to what is generally reported in the literature. One of the reasons might be
that we chose not to correct our data for baseline values, as is common in the psychophys-
iological literature. Another factor is that the present analysis was chosen to extend over a
relatively long period of time including the beginning of the video fragment in which the
targeted emotions were still in the process of being elicited, which might have diminished
the differences between categories of emotions.

For the zygomaticus major, we did find an effect for the average value, even when not
corrected for baseline and averaged over 120 seconds. This is in line with results of previ-
ous research by Larsen, Norris, and Cacioppo [380], who concluded that valence influences
both the corrugator supercilii and the zygomaticus major. They found that valence had a
stronger effect on the corrugator supercilii than on the zygomaticus major in experiencing
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3 Statistical moments as signal features

Table 3.2: The discriminating statistical parameters for the EDA, EMG corrugator supercilii,
and EMG zygomaticus signals. For each parameter, the average value for all four emotion
classes (i.e., neutral: 0; positive: +; mixed: +/-; negative: -.) is provided as well as the
strength and significance of its discriminating ability. Additionally, as measure of effect size
partial eta squared (η2) is reported, which indicates the proportion of variance accounted for
[211, 737].

Physiological Statistic average value on effect
measure parameter - + +/- - F (3, 18) p η2

EDA skewness 0.46 0.01 -0.15 0.39 7.289 = .002 .549
kurtosis -0.66 -0.78 0.55 -0.19 3.812 = .028 .388

EMG frontalis –
EMG corrugator skewness 1.99 2.84 3.49 3.29 3.500 = .037 .368
supercilii
EMG zygomaticus mean 2.74 5.21 3.15 3.53 9.711 < .001 .618

abs. dev. 1.64 3.77 2.10 2.42 8.369 < .001 .583
SD 2.46 6.01 3.68 3.96 5.837 = .006 .493
variance 7.23 63.82 18.69 23.21 4.064 = .023 .404

standardized affective pictures, sounds, and words, while our research shows a stronger
effect of the four emotion classes on the mean zygomaticus major signal, than on the cor-
rugator supercilii. In addition, the effect is present with four statistical parameters of the
zygomaticus major, where it is only present in one statistical parameter (skewness) of the
corrugator supercilii.

The difference in strength of the effects found between the current research and that of
Larsen, Norris, and Cacioppo [380] can possibly be explained by the absence of a baseline
correction in our procedure. Another difference between the two researches is the type
of stimuli (cf. [8]). Film scenes are dynamic and multi-modal, they induce emotions by
both auditory, and dynamic visual stimuli, as well as affective words, in some fragments.
The dynamic and multi-modal characteristics of the film scenes also provide good means to
build up emotions, or to create a shock effect [570, 700, 701]. This is almost not possible with
affective words, sounds or pictures of a static character, as their use lacks the opportunity to
built up emotions. On the one hand, all these factors give film scenes a relatively high degree
of ecological validity [235, 237, 700, 701]. On the other hand, it is not possible to determine
which modality influences the emotional state of the subjects to the highest extent.

For three of the 4 biosignals the parameter skewness turned out to be important as a
significant effect or as a trend. To the authors best knowledge, the skewness (and kurto-
sis) of EMG signals as discriminating descriptor have been discusses in only three studies.
In 1983, Cacioppo, Marshall-Goodell and Dorfman [82] analyzed among a number of pa-
rameters, the skewness and kurtosis of skeletal muscle patterns, recorded through EMGs.
Four years later, an article by Cacioppo and Dorfman [81] that discussed “waveform moment
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analysis in psychophysiological research” in general. In 1989, Hess et al. [278] conducted re-
search toward experiencing and showing happy feelings, also using video segments. Hess
et al. [278] recorded four facial EMG signals and extracted the mean, variance, skewness
and kurtosis of these signals. The current research is distinct from that of Hess et al. [278]
since it distinguishes four emotion classes instead of the presence or absence of only one.
Each of these three studies identified skewness and kurtosis of EMG signals as potentially
interesting for the discrimination between emotions. However, surprisingly little attention
has been given to moments of order 3 and higher in ASP.

3.8.2 Use in products

Not all investigated parameters of all measures proved to be equally suited for sensing hu-
man’s emotional states. This is no doubt due to the demanding analysis conditions we
imposed: no baseline correction and averages over relatively long time intervals. Neverthe-
less, even under these demanding analysis conditions, some of the measures still succeeded
in distinguishing between the respective emotion classes.

For three of the four biosignals used, the parameter skewness proved to be an inter-
esting source of information. The skewness of the distributions of the data of two of the
biosignals differs significantly over the four emotions, where a trend is present for a third
signal. To inspect more distribution details of the signals, additional analyses could be con-
ducted. Measures such as the slope of the signal and the peak density could be taken into
account for further analysis. Such analysis could help understanding to what extent emo-
tions were indeed built up during the movie scenes.

In addition to adding more descriptors of the biosignals, the time windows of measure-
ment can be changed. In the current setup, the time window enclosed the complete length
of the film scene. However, smaller time windows (e.g., 10 or 30 seconds) can be applied
to conduct more detailed analysis of biosignals’ behavior in relation to the movie content.
Moreover, dynamic time windows can be applied that enclose the time directly after a crit-
ical event (if any) appeared in the film scene. The drawback of the latter approach is that
it cannot be applied in practice, while it may be expected to provide good results for data
gathered through experimentation, as in the current research.

A more general notion that can have a significant impact on measurement of emotions
is that the emotional state of people changes over time, due to various circumstances. More-
over, different persons have different emotional experiences over the same events, objects,
or actions. This variance in experienced emotions is determined by a person’s personal-
ity. Personality traits correlate with affective states, especially with the personality traits
extraversion and neuroticism, which have been linked both theoretically and empirically to
the fundamental affective states of positive and negative affect, respectively [442]. Hence,
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3 Statistical moments as signal features

to enable tailored communication strategies in HCI, not only the emotional state of a person
should be determined but also his personality. When the system possesses a personality
profile of its user, it will be able to react appropriately to its user’s emotions by selecting a
suitable communication strategy. We will explore this issue in Chapters 5 and 6.

The next chapter will continue the analyses presented in this chapter. Analysis will be
conducted on the same data set using other time windows. Events in the movie fragments
will be traced and their effects on the EMG and EDA signals will be unveiled. Moreover, the
possible influence of scene changes will be addressed.
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Abstract

Emotion aware consumer products require reliable (i.e., unobtrusive, robust, and lacking cal-
ibration) short-term emotion assessment. To explore the feasibility of this, the data presented
in the previous chapter was analyzed again. The unfiltered biosignals were processed and six
statistical parameters (i.e., mean, absolute deviation, standard deviation, variance, skewness,
and kurtosis) were derived for each 10-sec interval of the film fragment. For each biosignal,
skewness and kurtosis discriminated between affective states, accompanied by other param-
eters, depending on the signal. The skewness parameter was also shown to indicate mixed
emotions. Moreover, a mapping of events in the fragments on the signals showed the im-
portance of short-term emotion assessment. Hence, this research identified generic features,
denoted important considerations, and illustrated the feasibility of emotion-aware consumer
products.

This chapter is a compressed version of:

Broek, E.L. van den & Westerink, J.H.D.M. (2009). Considerations for emotion-aware con-

sumer products. Applied Ergonomics, 40(6), 1055–1064. [Special issue: Psychophysiology in Er-

gonomics]



4.1 Introduction

4.1 Introduction

There is a growing interest in systems that are aware of user’s emotions. Such systems
find their domain of application in professional or specialized applications, such as emo-
tional support for people with autism [646], stress in ambulance dispatchers [467], irritation
detection to support call center employees [156], as therapy progress indicator for psychol-
ogists [677], or with pilots and airline crews to determine their arousal [657]. In a typical
consumer context, however, there is no explicit task at hand and the main intention is to
support a pleasant every-day life. In such a context, emotion-aware systems can adapt the
conversational dialogue in order to optimize HCI, can characterize someone’s emotional
state for them for increased self-awareness or for others for enhanced communication, or
they can adapt the user’s environment to the present mood.

The consumer context poses a number of boundary conditions that might be different
with respect to those of the professional context [63, 99, 722]. A first distinction is in the
accuracy required for emotion detection. Though any consumer or professional application
would preferably comprise a flawless emotion awareness system, it is likely that every now
and then the emotion detection will be incorrect. It is to be expected that such errors are
more detrimental in a professional application than in a consumer application, since they
interfere with the professional task. In many consumer applications, such a task is often less
prominent or even absent, and the system’s reactions are not rigidly classified as correct or
wrong, but rather as more or less preferred. Thus, a consumer application is somewhat more
resilient with respect to emotion misclassifications, and most probably a higher percentage
of misclassifications will be acceptable.

A second point of difference pertains to the unobtrusiveness of the application. If one
wears a system either for professional use or to compensate for a certain handicap, one
will more easily accept that the actual use of the system is not 100% comfortable [382, 693,
722]. For a consumer system, however, the emotion awareness system should preferably
be unnoticeable to the user, the ultimate perceived ease of use. For instance, it could work
from a distance, such as in speech or video processing. There, the detection of emotional
features in the speech spectrum or in the facial expression can be done even without the
awareness of the user; however, the physical range in which these systems work is limited.
For a discussion on this issue, we refer to Chapter 2. To overcome this range of problems, the
system could be worn. Then, it is important that it is not constantly noticeable to the user.
Another form of obtrusiveness is when the system needs constant (re-)calibration. Where
a professional application can require regular calibrations in order to improve the accuracy
of the awareness classifications, this is not the case for typical consumer use. There, regular
baseline-measurement periods or other explicit calibration actions interfere with the wish to
live everyday-life without hassle. Thus, the algorithms employed for emotion classification
should preferably be self-calibrating, especially in consumer-style applications.
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A third issue in emotion aware systems, both for professionals and consumers, is
time [382, 722]. Some applications work best when they can identify emotions over a rela-
tively long period of time. For instance, when moods are being measured they are generally
expected to last for hours, and change only gradually [567]. In contrast, in other applica-
tions emotions vary rapidly and a quick response of the system to changes in emotion is
required. This is especially the case for applications in the realm of communication. There,
emotions might come up quickly and it is important that the measured emotions are timely
and adequately accommodated to facilitate a natural continuation of the conversation. Re-
gardless of whether you want to convey your emotions privately to your partner or publicly
through expressive clothes [37]; a broadly time-averaged signal will hide the intensities and
will introduce interpretation delays. Also, if your home-computer or television set is to de-
tect your frustrations and emotions, and react to it in a soothing way, this should be done
immediately.

Thus, it appears that designing emotion-aware consumer applications is in fact much
like striking a balance: for professional systems, some obtrusiveness can be accepted, pro-
vided that emotion classification is accurate and timely. For consumer-style systems, the
balance is different: here unobtrusiveness and timely reactions are prime. But neither the
drive to make such a consumer system unobtrusive, excluding calibrations, nor that to de-
sign the system to react quickly to emotion changes in small time intervals, will add to the
accuracy of emotion detection. Luckily, there is some leeway: in consumer style systems,
emotion classification errors are probably less detrimental. The hope is that the decline in
accuracy is within acceptable limits. The research to be presented in the remainder of this
chapter derives from this observation. We want to investigate whether it is possible to de-
velop a method that captures quick changes with reasonable accuracy, but does not need a
baseline correction or a personality profile and is noise-resistant.

The current chapter adopts the data presented in the previous chapter. The aim of the
experiment with which this data was gathered was to check whether or not it is possible
to capture quick emotional reactions with self-calibrating algorithms. As a consequence of
these time and self-calibration requirements, we opted in the previous chapter for an exper-
iment in which the subjects’ emotions were elicited, using film fragments that are known to
be powerful in eliciting emotions in laboratory settings [235, 237, 700, 701]. We chose biosig-
nals that are commonly known to reflect emotions in the traditional (though not necessarily
unobtrusive) way of baseline-corrected and broadly time-averaged signal processing to en-
sure that at least some emotion information was captured. The data that will be analyzed
in this chapter has been adopted from an experiment that was already described in the pre-
vious chapter. Therefore, I will refrain from repeating the complete experimental setup and
refer to Chapter 3 for specifications on this.
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4.2 Data reduction

The classification of emotions is pictured integrated in various consumer applications. In a
quest to find algorithms suitable for consumer contexts, a set of requirements for processing
biosignals of affect can be specified, namely:

1. Short-term assessment; therefore, 10 second time windows are chosen.

2. Real-time processing; hence, as for the analyses in Chapter 3, baseline corrections are
omitted from the processing scheme.

3. Robustness against small-scale measurement errors that last only a relatively short
time interval; hence, distorted signals were not removed from the data set.

4. Good performance without personal profiles. At home and with some ubiquitous ap-
plications a personal profile can be easily included and will probably boost the perfor-
mance of the emotion classification. However, for various consumer applications the
use of such a profile cannot be realized; for example, in detecting customers’ emotions.
Hence, as for the analyses in Chapter 3, no personality characteristics were taken into
account in processing and analyzing the signals.

Despite the experimental character of this research, the requirements mentioned above
should be fully met. Thus, all 6 statistical measures have been calculated for all 4 biosignals
for each 10-second interval of each of the 8 selected video fragments, which are the same as
those selected for the analyses presented in Chapter 3. They were neither baseline-corrected
nor cleaned up with respect to small-scale distortions, as these are generally manual, time-
consuming operations, which are not plausible in a consumer context.

4.3 Results

With the first global analyses, as described in the previous chapter, we found that the newly
introduced statistical parameters skewness and kurtosis had good discriminating abilities.
In contrast, most averaged values of the biosignals did not yield significant effects. This
is hardly surprising considering the coarse method of averaging over an interval of 120

seconds, ignoring typical events and changes in scenes. Therefore, a new series of analyses
focussed on short-term emotion assessment, in twelve subsequent 10-sec time windows.
The analysis of the data comprised three phases:

1. Determination of the possible influence of scene changes within the video fragments;

2. Analysis of the individual film fragments; and

3. Mapping of the events that occur in the fragments and the behavior of the biosignals
at that moment.
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4.3.1 The influence of scene changes

Each video fragment consists of a concatenated series of shots, generating abrupt changes at
their transitions. The density of such scene changes might have a non-emotional impact on
the viewer. Therefore, this section will describe the nonparametric correlations (Spearman’s
Rho, two-tailed) between the density of scene changes and the features of the biosignals.
To this end, both the density of scene changes and the biosignals were determined for each
time window of 10 seconds of each video fragment. The fragments color bars and abstract
shapes were omitted from the analysis since they did not contain scene changes.

The Bear: The mean EDA (rs = .621, p = .031), the absolute deviation (rs =

.719, p = .008) and variance (rs = .636, p = .026) of the EMG frontalis, and the mean
(rs = .716, p = .009), absolute deviation (rs = .654, p = .021), SD (rs = .737, p = .006),
variance (rs = .581, p = .047), and kurtosis (rs = .610, p = .035) of the EMG corrugator
supercilii all correlated significantly.

Tarzan: The mean (rs = .642, p = .024) and SD (rs = .528, p = .078) of the EMG
corrugator supercilii both correlated significantly.

Final Destination: The mean EDA (rs = .790, p = .002), the skewness of the EMG
frontalis (rs = .619, p = .032), and the mean (rs = .638, p = .026) and variance (rs = .871, p <

.001) of the EMG corrugator supercilii all correlated significantly.

Lion King: The kurtosis of the EMG frontalis (rs = .580, p = .048) correlated.

Cry Freedom: The mean EDA (rs = .672, p = .017), the skewness of the EMG frontalis
(rs = .643, p = .024), and the mean (rs = .665, p = .018), absolute deviation (rs = .657, p =

.020), SD (rs = .643, p = .024), and variance (rs = .621, p = .031) of the EMG corrugator
supercilii all correlated significantly.

Pink Flamingos: The mean EDA (rs = .776, p = .003), the absolute deviation (rs =

.726, p = .008) and the SD (rs = .713, p = .009) of the EMG frontalis, and the mean (rs =

.651, p = .022), variance (rs = .813, p = .001), and skewness (rs = .713, p = .009) of the EMG
corrugator supercilii, and the absolute deviation (rs = .813, p = .001), SD (rs = .813, p =

.001), and variance (rs = .776, p = .003) all correlated significantly.

In the analysis described in the following three subsections, the correlations as reported
in this subsection will be taken into account. Hence, if effects found can be attributed to
scene changes, this will be noted.

4.3.2 The film fragments

We will now describe the results gathered through 24 Repeated Measures ANOVAs, with
film fragments (8 levels) and time (12 time windows) as within subject factors. The results
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Figure 4.1: The skewness measure of the galvanic skin response / ElectroDermal Activity
EDA) for each of the eight film clips.

will be presented subsequently for each of the four biosignals separately. Figures 4.2–4.5
show the mean signals over time, for each of the film fragments separately, averaged per
time window of 10 seconds. As measure of effect size partial eta squared (η2) is reported,
which indicates the proportion of variance accounted for (i.e., a generalization of r/r2 and
R/R2 in correlation/regression analysis) [211, 737].

EDA: The kurtosis (F (7, 147) = 2.847, p = .077; η2 = .119) of the EDA was the only
parameter for which a trend was found on the factor film. Both skewness (F (11, 231) =

3.168, p = .001; η2 = .131), and kurtosis (F (11, 231) = 2.735, p = .012; η2 = .115) indicated
an effect for the factor time, and we found a trend for the standard deviation (F (11, 231) =

2.509, p = .065; η2 = .107). An interaction effect on film*time was found for the parameters
mean (F (77, 1617) = 2.506, p = .032; η2 = .107), skewness (F (77, 1617) = 2.015, p < .001; η2 =

.088), and kurtosis (F (77, 1617) = 1.746, p = .007; η2 = .077). By way of example, the EDA
skewness data for all eight films are plotted in Figure 4.1.

EMG frontalis: No indications for differences between the signals were found between
the film fragments on any of the six statistical parameters. For the factor time, the skewness
of the signal of the EMG frontalis showed a clear trend (F (11, 231) = 2.173, p = .051; η2 =
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.094). However, this effect was possibly influenced by the number of scene changes, with
a significant effect (rs = .619, p = .032) and two trends on scene changes (rs = .512, p =

.089; rs = −.538, p = .071). No interaction effects for film*time were found.

EMG corrugator supercilii: The kurtosis (F (7, 147) = 5.793, p = .002; η2 = .216) of
the signal indicates that the choice of film is a factor of influence. The factor time and the
interaction of the factors film*time did not reveal factors of influence.

EMG zygomaticus major: All of its six statistical parameters discriminated between
the eight film fragments: mean (F (7, 140) = 6.968, p = .001; η2 = .258), absolute devia-
tion (F (7, 140) = 6.556, p = .001; η2 = .247), standard deviation (F (7, 140) = 5.545, p =

.004; η2 = .217), variance (F (7, 140) = 2.998, p = .062; η2 = .130), skewness (F (7, 140) =

6.266, p < .001; η2 = .239), and kurtosis (F (7, 140) = 3.114, p = .022; η2 = .135). For the
factor time, the skewness of the signal of the EMG zygomaticus major showed a clear trend
(F (11, 220) = 2.049, p = .052; η2 = .093). In addition, for the parameters mean (F (77, 1540) =

3.148, p = .001; η2 = .136), absolute deviation (F (77, 1540) = 2.566, p = .012; η2 = .114), and
standard deviation (F (77, 1540) = 2.276, p = .022; η2 = .102), an interaction effect film*time
was present. It should be noted that these effects were possibly influenced by scene changes;
see also Section 4.3.1.

The analysis reported in this subsection revealed various indicators for differences be-
tween the eight film fragments. In particular, skewness and kurtosis discriminated for all
four signals recorded, even when taking into account possible influences of scene changes.
In addition, we found several significant main effects of time, as well as significant inter-
action effects between time and film, underlining the variety of ways in which emotions
evolve over time in the film fragments. However, this does not denote which events or fea-
tures of the film fragments caused these differences. In order to achieve that, the behavior of
the four signals was analyzed over time and mapped upon the full transcription of the film
fragments. These analyses are described in the next section.

4.3.3 Mapping events on signals

In addition to the previous statistical analysis, we present analyses that relates the transcripts
of the film fragments to the signals behavior, following the principle of triangulation; that is,
“the strategy of using multiple operationalizations or constructs to help separate the construct under
consideration from other irrelevancies in the operationalization. At its simplest level, triangulation
refers to the use of multiple measures to capture a construct. The triangulation strategy, however,
also can be applied to multiple operationalizations of treatments and manipulations and to the use of
multiple theories, analyses, analysts, methodologies, and research designs, to name but a few.” [273].
Adopting this research strategy, we aim to generate a rich interpretation of the biosignals in
terms of emotions.
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Figure 4.2: The behavior of the mean EDA signal over time, for each of the eight film frag-
ments.

For each of the film fragments separately, each of the signals were mapped to the
content of the film fragment. We will only denote substantial changes in the signals (i.e.,
two or more mean absolute errors from the mean of the fragment) and events of im-
portance in the story line or the editing characteristics of the film fragments and specify
these. The physiological measures are presented in four separate figures, averaged per
time window of 10 seconds, respectively: the mean EDA (Figure 4.2), usually associated
with arousal [62, 203, 437, 497, 530, 536, 577], the EMG frontalis (Figure 4.3) denoting fa-
tigue [133, Chapter 10], [291], the EMG corrugator supercilii (Figure 4.4) indicating negative
emotions [380], and the EMG zygomaticus major (Figure 4.5) for positive emotions [380].

Color Bars: Typical events or screenshots were absent. The EDA showed a gradual
decline, indicating a decline in arousal, as is shown in Figure 4.2. The EMG signals were
all stable, as shown in Figures 4.3–4.5. The skewness of the EDA (see Figure 4.1), EMG
corrugator supercilii, and EMG zygomaticus major each showed one peak.

Abstract Figures: A gradual decline of the mean EDA was observed. The signal of
the EMG frontalis was stable; see Figure 4.3. The signal of the EMG corrugator supercilii
showed a slow increase (See Figure 4.4) and the signal of the EMG zygomaticus major was
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Figure 4.3: The behavior of the mean electromyography (EMG) signal of the frontalis over
time, for each of the eight film fragments.

stable (see Figure 4.5). Altogether, the signals recorded for both films categorized as neutral
(i.e., Color Bars and Abstract Figures) showed a similar behavior. Also for the Abstract
Figures, the signals indicate a decline in arousal (through the EDA) accompanied by little
fatigue, as indicated through the EMG signal of the frontalis, as shown in Figure 4.3. The
skewness of the EDA and EMG frontalis each showed one peak. The skewness of the EMG
corrugator supercilii showed two peaks.

The Bear: The subjects’ arousal, as indicated by the EDA, increased (see Figure 4.2) and
was accompanied by a frown, as measured through the EMG corrugator supercilii, up to the
moment that the bees appear to be a positive signal instead of a negative one; see Figure 4.4,
time: 70. Throughout the fragment, a constant varying mental workload was present, as il-
lustrated through the signal of the EMG frontalis; see Figure 4.3. The frontalis’signal showed
a peak on 50 seconds, accompanying the shot of the bear’s foot. The variability of the EMG
zygomaticus major (see Figure 4.5) in general indicates various moments of positive emo-
tions. The skewness of both the EMG frontalis and the EMG corrugator supercilii showed
a peak between 50 and 60 seconds denoting fatigue and negative emotions. This can be ex-
plained by the close-up of the big bear, while he was scratching. Between the 70th and 80th
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Figure 4.4: The behavior of the mean electromyography (EMG) signal of the corrugator
supercilii over time, for each of the eight film fragments.

seconds participants smiled (skewness of the EMG zygomaticus major) because the mother
bear and her child cub were playiing.

Tarzan: The high level of activity of the zygomaticus major (see the peak at 20−30 sec-
onds in Figure 4.5), indicates the presence of positive emotions. Moreover, this scene did not
yield to high workload, which is not that strange for a film made for children. Participants
smiled when the music was started as denoted by a peak (10−30 seconds) in the skewness of
the zygomaticus major. The monkeys start drumming using kitchen material, which caused
a peak in the skewness of both the EMG frontalis and EMG corrugator supercilii, denoting
respectively fatigue or influence of scene changes and a decline in negative emotions.

Final destination: The fragment that was used has a length of 52 seconds. During the
remaining 68 seconds a blue screen was shown; see also Section 3.5.2. From the start until
the end of the fragment (and the start of the blue screen), a constant EDA and its skewness
was determined (see Figures 4.1 and 4.2). At the end of the film fragment, a bus drives
over a lady. This last event illustrated by the increase in arousal, measured through the
EDA and its skewness (see Figures 4.1 and 4.2), and the laughter around the event and the
immediate disappearance of the smile after the event and the end of the film fragment (time:
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Figure 4.5: The behavior of the mean electromyography (EMG) signal of the zygomaticus
major over time, for each of the eight film fragments.

50 seconds), as recorded through the zygomaticus major, presented in Figure 4.5. The effects
on the EMG corrugator supercilii, however, can also be influenced by scene changes; see also
Section 4.3.1. The almost simultaneous activation of the EMG corrugator supercilii and the
zygomaticus major underline the presence of a mixed emotion, as was expected. The mental
workload was stable over time as illustrated through the EMG frontalis signal, as shown in
Figure 4.3. All 4 signals show a significant change in skewness between 40 − 50 seconds.
In this time window, a turbulent and strange situation is present in which the tension rises,
as is illustrated (among other things) by the statement: “drop dead!” Moreover, the change
of all signals in parallel denotes the hypothesized mixed emotions. After this the fragment
ended and the blue screen started; no changes in the signals were recorded anymore.

Lion King: The fragment chosen from this film is a sad one: Simba (the young lion)
finds his father dead. During this scene, all mean biosignals were stable, reflecting no change
in emotions. However, the skewness of the EDA (see Figure 4.1) and the EMG corrugator
supercilii and EMG zygomaticus major all peaked denoting fatigue, accompanied by mixed
feelings, as was hypothesized. In addition, at time 60 seconds, a peak was present in the
skewness of the zygomaticus major signal, illustrating the appealing shots in which the
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young Lion King is anxious for his father. Between the 80th and 90th seconds, a new shot is
shown providing an overview, which needs to be processed, illustrated by the peak in the
skewness of the EMG frontalis. Also for this fragment, aimed to trigger mixed emotions, the
skewness of the signals changed in parallel, denoting such mixed emotions.

Cry Freedom: A constant tension and a large number of scene shifts is present in this
film’s fragment. Both were expected to contribute to the constant high arousal, as reflected
in the EDA signal (see Figure 4.2). An increase in mental workload with a peak at 40 seconds
(as registered by the EMG frontalis; see Figure 4.3) was present when the soldiers appeared.
Next, it became clear what was going to happen, this was accompanied with a decline of
the EMG frontalis signal (see Figure 4.3) indicating a decrease in fatigue. The tension / un-
pleasant feeling was present throughout the complete film fragments, as was illustrated by
the constant increase of the EMG signal of the corrugator supercilii, as shown in Figure 4.4.
However, the EMG corrugator supercilii has also been influenced by the fragment’s scene
changes; see Section 4.3.1. The fragment did not appeal to positive emotions; consequently,
the EMG of the zygomaticus was stable (see Figure 4.5). The skewness of EMG frontalis and
the EMG corrugator supercilii changed in time window 10− 30 seconds. This illustrates the
impact of the shots chosen by the director: the boy and the crowd in an atmosphere of se-
vere tension. Between 90−110 seconds the first shots are fired and the crowd starts running,
which caused arousal, negative emotions, and participants’ smile fading.

Pink Flamingos: The fragment taken from this film can be best depicted as absurd.
A constant arousal was present, which declined after the scene’s end (at 30 seconds; see
Figure 4.2). The EMG frontalis had a stable signal throughout the scene (see Figure 4.2),
indicating a constant fatigue, except for a peak at 20 seconds. The absurd character of the
sequence of strange shots (a huge drag queen and her tiny dog) followed by a shot of the
drag queen eating inedible repulsive substances (0 − 20 seconds) triggered both negative
and positive emotions. Consequently, the signal of both the EMG corrugator supercilii and
zygomaticus major peaked as the initial smile disappeared (see Figures 4.4 and 4.5). Between
10 − 20 seconds a high skewness of the EDA and the EMG frontalis was present, denoting
high arousal and heavy processing, which nicely maps on the rapid changes in shots and the
absurd events that happen. Note that most parameters of the 3 EMG signals were influenced
by the rapid scene changes in the fragment, as is denoted in Section 4.3.1.

4.4 Discussion and conclusion

4.4.1 Interpreting the signals measured

In line with the previous chapter, the parameters skewness and kurtosis proved to be strong
discriminating features of the EDA and EMG signals, also in the short-term analyses, which
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is well illustrated by the various significant effects found. They revealed compelling evi-
dence for the distinct character of the affective signals over time for each of the film frag-
ments. The kurtosis of the EDA and EMG zygomaticus major signal differentiated between
the 8 film fragments. The skewness of all 4 signals indicated an influence of the factor time.
In addition, various other statistical parameters indicated differences between the film frag-
ments. Even with all of its statistical parameters the EMG zygomaticus major differenti-
ated between the film fragments. Apparently, differences in emotions or feelings are usu-
ally reflected in various statistical parameters, but not necessarily in all of the ones tested
(cf. [81, 82, 278]). Why the effect over all statistical parameters only occurred for the zygo-
maticus major activity in the present experiment is not a priori clear; maybe effects of sig-
nal resolution played a role, maybe it is related to the fact that positive emotions are more
overtly expressed in our culture [450]. This last explanation could be tested by measuring
the orbicularis (i.e., the “smiling muscle”) in similar situations [82, 84, 85, 179].

In contrast with our findings, Larsen, Norris and Cacioppo [380] concluded that va-
lence influenced the corrugator supercilii more than the zygomaticus major when partic-
ipants experienced standardized affective pictures, sounds, and words. This can be ex-
plained by two major differences between both studies: different statistical parameters were
tested and different stimuli were used; dynamic, multimodal film fragments vs. affective
words, sound, or pictures [570, 663]. This issue is a matter of the traditional trade-off be-
tween, on the one hand, ecological validity, as is required for consumer applications and, on
the other hand, a high level of control, which enables the isolation of effects through various
factors; see also [63, 235, 237, 570, 700, 701].

The events that occurred throughout the scenes chosen from the eight film fragments
were clearly reflected in the four biosignals, although not always simultaneously - as ex-
pected. Moreover, the nature of the events and the emotions they are expected to trigger, ex-
plain the clear distinction between the film fragments, as found in the analyses. Even for the
two film segments that lasted considerably shorter than 120 seconds, we saw mainly decay-
ing signals after the actual film fragment has stopped. The only exception is a zygomaticus
activity at 60 seconds in the Pink Flamingo fragment, which might well be due to hilari-
ous retrospective consideration of this absurd film clip (see Section 4.3.3 for a description).
In general, however, the analyses sustain the relations between cognitive and emotional
constructs and the four biosignals used, as are known from the literature. The EDA signal
indicates the extent of arousal that is experienced by subjects [62, 203, 437, 497, 530, 536, 577].
However, the cause underlying this arousal can be the experienced emotions as well as the
information, in terms of sensory input that has to be processed; for example, sounds and
changes in scenes. The relation between the EMG frontalis and mental workload [291, 650],
fatigue, or relaxation was not clearly expressed in the results obtained from this research.
The EMG signal of the corrugator supercilii correlates with frowns, as is reported in the
literature [380]. However, a frown can be expressed for various reasons, among which the
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coarse collection of negatively experienced emotions. The relation between the behavior of
the EMG signal of the zygomaticus major and positive emotions is most transparent of all
four signals [23, 380]. Although, the notion of positive emotions is abstract and its position
within the emotion models is subject to debate [396, Chapter 29], [205, 423, 598]. Moreover,
recent research revealed a relation between affective valence and working memory [230].
Hence, possibly even the EMG corrugator supercilii and the EMG zygomaticus major are
influenced by information processing in addition to our emotions [171, 250, 291, 601].

With complex stimuli as film fragments, mapping events on biosignals is of impor-
tance. Moreover, it emphasizes the importance of timing for processing emotions. A delay
in processing emotions larger than 10 seconds would result in strange interpretations and,
consequently, situations, as our analyses show. Whether a delay of 10 second is sufficient,
cannot be derived from this data however, but needs to be researched in other contexts,
especially ones that are more interactive. Moreover, timeliness is especially important for
the interpretation of mixed emotions: the initiation of multiple emotions [79, 92, 379]. Al-
though mixed emotions have been a topic of debate for more than a decade [79], no accurate
definition of mixed emotions exists. Do multiple emotions co-exist in parallel, is their ap-
pearance in sequence, or do they merge into each other? Two of our film fragments are
suited to explore this issue, Final Destination and Lion King , since they were judged to trig-
ger mixed emotions by the subjects. During the Lion King, the mean physiological measures
did not indicate changes in emotions, although the questionnaires indicated otherwise with
the questions on negative and positive emotions. The mapping of the Final Destination’s
transcription and the biosignals illustrated the appearance of mixed emotions: an increase
in arousal and frowning was shown, immediately followed by a smile. The onset of these
emotions clearly differed, with the corrugator activity linked to negative feelings mostly
preceding the zygomaticus activity linked to positive feelings. However, the skewness mea-
sure of the signals seems to indicate the existence of mixed emotions perfectly with both film
fragments. The skewness of the EDA, EMG corrugator supercilii, and the EMG zygomati-
cus major in parallel showed a clear reaction to both films on one event, indicating a change
in arousal, negative, and positive emotions. This would argue for the parallel occurrence
of emotions. However, follow-up research is needed to verify whether or not the current
findings will sustain throughout various groups of participants, stimuli, and settings. In
particular, analyses using short time windows and annotated dynamic multimodal stimuli,
such as used in the research presented in this chapter, should be utilized for this purpose.
This would enable ecologically valid controlled research on ASP.

4.4.2 Looking back and forth

The main intention of this chapter was to investigate to what extent emotional effects can
be followed over time with baseline-free analysis, omitting corrections for personality traits
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and anomalies of the data. The figures and their interpretation clearly show - at least for
the predominantly female participants in our study - that such effects are reflected in the
recordings. Two points add to this expectation: First, the data we presented were averages
over participants, using the raw biosignals, and possible differences between the individuals
and their individual experiences were not even explored in our analyses. Thus, individual
reactions might be even larger. Second, in real life the physiological reactions to the most
relevant emotions might well be more marked than those elicited by excerpts from movies,
as in the present experiment. Both considerations feed the hope that in relevant real-life
situations, the physiological reactions of individuals can be detected through baseline-free
analysis. The topic of inter-individual differences in timing patterns is also interesting in
itself: one possible way to investigate it would be an experiment in which subjects are re-
peatedly presented with the same sequence, thus reducing noise.

All in all, this chapter underlines that emotion-aware consumer products could become
a reality, as far as ASP and consumer electronics are concerned. For any given application, it
will be necessary to investigate what processing delays are still acceptable. Additionally, the
success of such an application will depend on ethical issues and issues of trust: will people
feel comfortable knowing that their emotions are known, if not to others, then at least to the
product? Or will the products make them feel observed and uneasy? [13, 200, 280, 525] This
will no doubt be related to the context of use: at home people are usually more comfortable
in having and showing emotions than at work.

In this and the previous chapter, we explored the feasibility of emotion aware con-
sumer products that use biosignals. Consumer products require reliable (i.e., unobtrusive,
robust, and lacking calibration) short-term emotion assessment. To explore the feasibility of
this, an experiment was conducted where the EDA and 3 EMG signals (i.e., frontalis, cor-
rugator supercilii, and zygomaticus major) were measured. The unfiltered biosignals were
processed and six statistical parameters were derived. For each of the four biosignals, both
skewness and kurtosis discriminated between affective dimensions, accompanied by four
other parameters (i.e., mean, mean absolute deviation, standard deviation, and variance)
that depend on the signal. The skewness parameter was also shown to indicate mixed emo-
tions. Moreover, a mapping of events in the fragments on the signals showed the importance
of short-term emotion assessment in addition to emotion assessment over several minutes
as was applied in the previous chapter.

In the next two chapters, in Part III, we use another biosignal (i.e., ECG) and combine
it with an indirect biosignal (i.e., speech). Although such a combination may sound obvi-
ous, it is rarely applied (see, Chapters 1 and 2). The studies conducted in Chapter 5 and
Chapter 6 are identical, except for their stimuli. In Chapter 5 a subset of the IAPS database
is used, which is considered as a, or even the, standard in affective computing research.
Subsequently, in Chapter 6, the movie fragments used in Chapters 3 and 4 are used again.
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Emotion models, environment,
personality, and demographics



Abstract

Emotions are a crucial element for personal and ubiquitous computing. What signals to sense
and how to sense them, however, remains a challenge. This study explores the rare combina-
tion of speech, electrocardiogram, and a revised Self-Assessment Mannequin (SAM) to assess
people’s emotions. 40 People watched 30 International Affective Picture System (IAPS) pic-
tures in either an office or a living room environment. Additionally, their personality traits
neuroticism and extroversion and demographic information (i.e., gender, nationality, and
level of education) were recorded. The resulting data was analyzed using both basic emo-
tion categories and the valence-arousal model, which enabled a comparison between both
representations. The combination of heart rate variability and three speech measures (i.e.,
variability of the fundamental frequency (F0), intensity, and energy) explained 90% (p < .001)
of the participants’ experienced valence-arousal, with 88% for valence and 99% for arousal (ps

< .001). The six basic emotions could also be discriminated (p < .001), although the explained
variance was much lower: 18%-20%. Environment (or context), the personality trait neuroti-
cism, and gender proved to be useful when a nuanced assessment of people’s emotions was
needed. Taken together, this study provides a significant leap toward robust generic ubiqui-
tous affective computing.

This chapter is based on:

Broek, E.L. van den (2011). Ubiquitous emotion-aware computing. Personal and Ubiquitous

Computing, 15(). [in press]



5.1 Introduction

5.1 Introduction

It has been 40 years since Skinner [614] said: The application of the physical and biological sci-
ences alone will not solve our problems because the solutions lie in another field. . . . It is not enough to
“use technology with a deeper understanding of human issues,” or to “dedicate technology to man’s
spiritual needs,” or to “encourage technologists to look at human problems.” . . . What we need is a
technology of behavior. . . . But a behavioral technology comparable in power and precision to physical
and biological technology is lacking . . . (p. 4-5).

Since Skinner’s words [614], much has changed but even more has not. On the one
hand, phenomena of private experience, whether they be characterized as mental or emotional, con-
scious or unconscious, are inaccessible to direct public observation; the actions of living organ-
isms, on the other hand, can be observed directly and studied in relation to antecedent conditions
in the same way as the phenomena treated in other sciences (p. 3) [482]. This was the case
four decades ago and still is the case, despite the impressive progress of cognitive sciences
and neuroscience [569] (e.g., brain imaging techniques [419, 718] and brain-computer inter-
faces [93, 146, 637]). On the other hand, technologies ranging from biosensors to robots have
become smaller, even miniaturized [479], and can be integrated into virtually all products
(e.g., clothes [622] or our homes [706]). Consequently, new branches of science and engi-
neering have emerged, such as personal and ubiquitous computing (UbiComp) [207, 363],
ambient intelligence (AmI) [120], pervasive computing [59]), wearable computing [10], and
the Internet of Things [224, 358] (also known as physical computing, haptic computing, and
things that think).

The true potential of the emerging branches of science such as UbiComp and AmI is
more than an engineering paradigm. The envisioned systems can only be realized if human
behavior can also be analyzed automatically. Subsequently, the resulting knowledge can be
utilized for the integration of humans’ inputs and outputs with those of their media. This
yields intuitive computing and brings us to one of its core notions: (human) emotions. This
has long been accepted by psychologists but has only been embraced by science and engi-
neering since Picard’s book Affective computing in 1997 [521]. As a result, ambient sensing
of emotions [676], emotion-aware consumer products [679], and affective interaction [189]
have been proposed. This is what this chapter will be about.

Emotions can be transmitted either overtly (e.g., by the face, the body, or the voice),
covertly (e.g., biosignals), or in a combination of both [152]. On the one hand, the complex
nature of emotion is illustrated by the absence of an integral model of (human) emotions
(cf. [152]). So, it is still largely unknown what cues humans process in determining others’
emotional states. On the other hand, the processing of signals related to emotions has been
a topic of research for more than a century [144, 371, 396]. Until the end of the 20th century,
attention to this relation, however, was limited and, hence, so was progress [152] (cf. [139]).
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In this chapter, five issues will be addressed that are troubling the development of
ubiquitous emotion-awareness:

1. A broad range of physiological signals, speech, and computer vision techniques are
employed to determine people’s state of emotions. Regrettably, despite the rapid
growth of such techniques, these methods are either obtrusive, sensitive to noise, or
both [191, 680].

2. What emotions are, how they can be described, and how they are expressed remains
difficult to define [144, 302, 396, 482].

3. Although it is generally agreed that environment (or context) is of the utmost impor-
tance [6, 32, 325], lab and field research in this field is seldom compared [327, 384, 680].

4. Personality traits are seldom taken into account (e.g., [338, 524, 739]), although widely
recognized as being important [453, 624, 680].

5. Demographic information (e.g., age [435, 553], gender [361, 718], culture [56, 239, 450,
470], social class [239, 470], and nationality [458]) and ethnics [585, Chapter 28], [56,
603] are known to possibly influence experienced emotions and their accompanying
physiological responses. Nevertheless, this basic information is often disregarded.

By addressing the combination of these issues, we expect to contribute significantly to
emotion-aware technology.

In the next section (Section 5.2), we will briefly introduce the construct emotion and
two models of emotion that are often used in affective computing. Next, in Section 5.3, we
will discuss signals of emotion and introduce the hybrid approach chosen in this research.
Subsequently, in Section 5.4, we will introduce the study conducted. Section 5.5 will describe
how the different types of signals are processed. Next, the results and their interpretation
will be described in Section 5.6. We will close, in Section 5.7, with a general discussion.

5.2 Emotions

A complete bookstore could easily be filled with books and articles on emotion and related
topics. Reviewing this vast amount of literature falls beyond the scope of the current chapter.
Moreover, excellent handbooks (e.g., [144, 396]) and review articles (e.g [139, 302]) have
already been published on this topic. So, no overview of emotion theories and their levels of
description has been provided so far nor will be provided in the remaining chapters. Instead,
we will now work towards a stipulative definition of emotion. This is necessary as there is
still no consensus on a definition of “emotion,” and theorists and researchers use “emotion” in ways
that reflect different meanings and functions (p. 363), as Izard recently stated [302]. Moreover,
one of this chapter’s main aims is to compare two emotion representations. Hence, it is
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needed to provide some foundation on the notion of emotions. The overview presented
next takes up a special section of the journal Emotion Review as foundation [302].

5.2.1 On defining emotions

In the search for consensus on what emotion is, Izard [302] identified six key structures
of emotion, namely: i) neural systems, ii) response systems, iii) feelings, iv) expressive
behavior, signalling systems, v) antecedent cognitive appraisal, and vi) cognitive interpre-
tation of feelings. Moreover, seven functions of emotions were identified: i) facilitates at-
tention and direction of responses, ii) motivates cognition and action and provides emotion
information [484], iii) alters the salience or value of an event to facilitate adaptive associa-
tions, iv) contributes to emotion and behavior regulation, well-being, and the safeguarding
of sensitivities and concerns, v) social signaling, communication, vi) provides a neural (often
conscious) workspace for assembling solutions, and vii) different emotions (and their struc-
tures) have different functions. Together, these aspects and functions of emotion provide a
knowledge space we can work with.

Izard [302] concludes by stating that Emotion consists of neural circuits (that are at least
partially dedicated), response systems, and a feeling state/process that motivates and organizes cogni-
tion and action [484]. Emotion also provides information to the person experiencing it, and may in-
clude antecedent cognitive appraisals and ongoing cognition including an interpretation of its feeling
state, expressions or social-communicative signals, and may motivate approach or avoidant behavior,
exercise control/regulation of responses, and be social or relational in nature. (p. 367) [302]. This
does not provide us with a precise definition of emotion as a unitary concept. However, it
does provide us something to hold on to and work with. Moreover, more than anything
else, it emphasizes both the complexity of emotions and their ubiquitous nature.

5.2.2 Modeling emotion

As we outlined in the previous section, emotions are complex to untangle. However, there
is general consensus on the neural systems underlying them, which are at least partly ded-
icated [302]. This having been said, emotion recognition remains challenging for both man
and machine. For example, different emotions and different structures of each emotion have
different functions [302] and neural systems are influenced by much more than solely emo-
tions (e.g., imagine what happens to your heart rate when you start walking).

For engineering practice a workable model of emotion needs to be adopted. However,
there are good arguments to state that such a model is beyond science’s current reach. Nev-
ertheless, some model needs to be chosen; otherwise, signals of emotion cannot be processed
and classified and our endeavor ends prematurely. Psychology distinguishes two emotion
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models: i) discrete emotion categories and ii) a (2D or 3D) continuous dimensional model
of emotion.

The discrete emotion categories originate from Darwin’s pioneering work on basic
emotions. The theory behind this model assumes that these emotion categories are hard-
coded into our neural system and recognized universally [116, 181, 391] (cf. the debate
on color categories as unveiled by Berlin and Kay [550] and the notion of basic level cat-
egories coined by Hoenkamp, Stegeman, and Schomaker [284]). Although still a topic of
debate, most consensus exists on the six emotion categories: happiness, sadness, surprise,
fear, anger, and disgust.

The (continuous) dimensional model of emotion assumes orthogonal unipolar or bipo-
lar dimensions that together can describe the emotional state a person is in. Most often Rus-
sel’s circumplex or valence-arousal (VA) model of emotions [105, 176, 202, 452, 567, 647]
is adopted. This distinguishes arousal and valence (i.e., pleasure / displeasure) as two
orthogonal bipolar factors that describe emotions. The dimensional VA model has fre-
quently been extended [79, 202]; for example, to enable the incorporation of mixed emo-
tions [92, 458, 679, 709]. These extensions often incorporate two unipolar valence dimen-
sions: one for positive and one for negative valence, instead of one bipolar valence dimen-
sion. Such extended VA models incorporate three dimensions, instead of two. This approach
was also adopted for the current research.

5.3 Ubiquitous signals of emotion

As we already mentioned in the introduction, the techniques usually employed to process
signals of emotion are often either obtrusive, sensitive to noise, or both. We will now discuss
each of the three signals: biosignals, computer vision, and speech and identify their pros and
cons. Next, we will introduce the hybrid approach adopted in the research described in this
chapter.

Features of physiological signals (or biosignals) are known to indicate emotions [85,
191, 672]; however, measurement of such signals is often experienced as obtrusive by partic-
ipants. However, with the progress of wearable computing and wireless sensing technolo-
gies in the last decade this problem quickly vanishes [10, 138, 257, 414, 438, 508, 513, 728,
744]. In parallel, biosignal recording, even with a certain amount of obtrusiveness, is em-
braced by the general public in Western societies (e.g., real-time ElectroCardioGram (ECG)
processing to guide athletes). Hence, the path towards biosignal-based affective computing
would seem to be paved.

An alternative for biosignals are computer vision techniques. These can be employed
both as a static (i.e., image) and a dynamic technique (i.e., video) [241, 717, 727, 739]. Al-
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though appealing, computer vision techniques are only usable for emotion recognition in
very stable environments. Speech-based affective computing is probably the most exhaus-
tively studied technique of this triplet. Its early studies included humans as classifiers,
followed by advanced statistical procedures, and, subsequently, automated digital speech
signal processing by computers [182, 590, 644, 725, 739]. Speech can be considered as an
indirect biosignal that is very well suited to unveil the emotional state of a person.

Signals from the first group (i.e., biosignals) are rarely combined with signals from the
other two groups (i.e., computer vision and speech). In contrast, biosignals themselves are
frequently combined (e.g., [247, 338, 524, 675]). Also signals from the speech processing and
computer vision groups are frequently combined [131, 184, 511, 739]. However, some ex-
ceptions exist. Bailenson et al. [25] combined computer vision and physiological measures.
Van Drunen et al. [682] combined physiological measures with eye tracking, thinking aloud,
and user-system interactions (cf. [680]). The current study combines speech and biosignals
for emotion recognition. To the author’s knowledge only two groups have reported on this
combination: Kim et al. [336, 337, 339, 340] and the current author and colleagues [676].
A possible explanation is the lack of knowledge of the application of this combination of
measures. We expected to extract features from both the speech and the ECG signal of peo-
ple’s experienced valence and arousal as well as on their basic emotions. Let us now briefly
introduce both of these signals.

The human speech signal can be characterized by various features and their accompa-
nying parameters. However, no consensus has thus far been reached on the features and
parameters of speech that reflect the emotional state of the speaker. Most evidence exists for
the variability (e.g., standard deviation; SD) of the fundamental frequency (F0), the intensity
of air pressure (I), and the energy of speech (E) [182, 590, 644, 725, 739]. Therefore, we have
selected these speech features in the current research.

The ECG is an autonomic signal that cannot be controlled easily, as is the case with elec-
trodermal activity [85]. ECG can be measured directly from the chest. Where Blood Volume
Pulse (BVP; i.e., photoplethysmography to detect blood pressure and determine Heart Rate,
HR) can already be recorded rather unobtrusively for some time, it would seem it will also
be possible soon for ECG [414, 513]. Previous research identified various features of ECG as
indicators for both experienced valence and arousal [14, 85, 105, 481]. However, most evi-
dence is provided for the HR variability (HRV) [304, 349]. HRV decreases with an increase
in mental effort, stress, and frustration [85, 682]. Moreover, HRV can be influenced by the
valence of an event, object, or action [14, 481, 538]. On the whole, HRV as can be derived
from ECG is a rich source of information and has been shown to be a powerful discriminator
between emotions [304, 349]; therefore, HRV was selected as the ECG’s feature.
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5.4 Method

5.4.1 Participants

40 volunteers (20 male, 20 female [361]; average age 27.8; standard deviation: 7.6; range:
18-49) participated. None of them had hearing impairments or any known cardiovascu-
lar problems. All had (corrected to) normal vision. The participants were ignorant of our
research goals.

The participants were divided into two groups of 20 each. One group of participants
was assigned to an office environment, in which they took place in an office chair. The other
group of participants was assigned to a living room environment, in which they sat on a
couch. At both locations, the room was silent and darkened and a screen was placed in front
of the participant. Although both environments were controlled, this enabled an opera-
tionalization of the concept context (or environment) and, hence, its influence on ubiquitous
affective computing.

After instructions, the participant signed an informed consent, and the ECG measure-
ment belt and headset were positioned. Next, the participant read aloud a non-emotional
story to a) verify by asking whether or not the participant had understood the instructions,
b) to test the equipment, and c) to determine their personal baseline for both the speech and
the ECG signal.

Traditionally personality traits are often assessed using questionnaires. Although con-
venient in most research settings, it is not convenient with most end consumer applications.
The latter was the main reason to omit personality questionnaires from the research as pre-
sented in the previous two chapters. However, with the current research aims to unveil key
features for ASP and, hence, the former is applicable. Therefore, with the current study as
well as with the study presented in the next study, personality traits are taken into account.

Using a questionnaire, we recorded general demographic information of the partici-
pants: age [390, 435, 661], level of education, and nationality [603]. This information was
used to control for them as possible sources of influence [680]. Next, the participants were
also asked to fill in a revised, short scale of the Eysenck Personality Questionnaire (EPQ-
RSS) [187]. Two binary indices were derived from the EPQ-RSS. These indicate the partic-
ipants’ personality traits neuroticism and extroversion, which are both known to influence
the emotions experienced [126, 422, 442, 676].

5.4.2 International Affective Picture System (IAPS)

To elicit an emotional response, the participants looked at 30 pictures from the International
Affective Picture System (IAPS) [374]; see Table 5.1 for their identification numbers. The
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Table 5.1: The 30 IAPS pictures [374] with the average ratings given by the participants on
the positive valence, negative valence, and arousal Likert scales. From the positive and neg-
ative valence ratings, three valence categories were derived: neutral, positive, and negative.
Using the scores on arousal, two arousal categories were determined: low and high. Con-
sequently, we were able to assess a discrete representation of the valence-arousal (VA) that
distinguished six compounds.

IAPS identifiers basic VA model
emotions valence arousal

4624, 4625, 7450, 8033, 8220 joy positive high
2120, 3015, 6022, 6230, 6312 anger negative high
5000, 5020, 5030, 5800, 7900 relaxed positive low
2141, 2205, 2375, 9220, 9435 sadness negative low
2704, 5920, 7640, 8160, 8232 neutral 1 neutral high
2214, 7000, 7041, 7484, 9070 neutral 2 neutral low

IAPS set is based on a dimensional model of emotion [105, 374, 452]; however, as has been
shown, this set also has great potential to reflect multiple emotion categories [452, 676].
Moreover, this set of pictures has been thoroughly and repeatedly validated [374, 452] and,
as such, serves as a sort of ground truth for emotion research. The pictures were randomly
presented on a 15.4 inch TFT screen (1280 × 800 pixels, 60 Hz refresh rate; video card: ATI
Mobility Radeon 9700).

Each of the 30 IAPS pictures (see Table 5.1) were shown for a duration of 20 seconds,
which is more than sufficient for emotion assessment [679]. After the presentation of each
picture, the participants had 30 seconds to describe it, followed by a resting period of 20
seconds. During these 50 seconds, a gray screen was shown. The experiment started and
finished by displaying a gray screen lasting 50 seconds.

5.4.3 Digital Rating System (DRS)

After all 30 IAPS pictures were presented and the participants had described them, the par-
ticipants had been asked to judge the IAPS pictures using a Digital Rating System (DRS).
The DRS displayed the IAPS pictures to aid the participant’s memory, together with 11 point
(range: 0 to 10) Likert scales using radio buttons; see Figure 5.1. The complete set of all 30
IAPS pictures was presented three times in separate blocks. Within the three blocks, the
IAPS pictures were presented in random order. To each block, one of the three Likert scales
(i.e., positive affect, negative affect, and arousal [79, 679]; see Section 5.2) was assigned in
semi-random order; that is, the second block presented the arousal scale, the first and third
block presented the negative and positive valence scales in balanced order. Consequently,
the possible bias in judging the IAPS pictures was limited. The DRS’ Likert scales were
augmented with the Self-Assessment Mannequin (SAM) [67] of which three pictures were
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Figure 5.1: A screendump of the Digital Rating System (DRS) used in this research; see
Section 5.4. An IAPS picture (category: relaxed) is shown [374]. Below the 11 point (0-10)
Likert scale with radio buttons is shown augmented with three Self-Assessment Mannequin
(SAM) images. With these images the experienced arousal was assessed as indicated by both
the SAM images and the text “Calm vs. Excited scale”.

shown; see Figure 5.1. This provided an intuitive and validated subjective assessment of the
emotions the participants’ had experienced.

The three scales used allowed us to contruct the VA model; see also Section 5.2. In
addition, it enabled us to assign the images to the six basic emotions [105, 452], see also
Table 5.1. For each picture, the average rating on each of the three scales over all partici-
pants was calculated (see Figure 5.2). This enabled a classification of the pictures into two
categories (i.e., high and low) for each of the three scales: positive, negative, and arousal.
From these classifications, two categories for arousal were identified: high arousal and low
arousal. In addition, three categories for valence were identified: positive, negative and
neutral, where the category neutral denotes neither positive nor negative valence. Table 5.1
provides a specification of the emotion categories and the IAPS images assigned to them.
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Figure 5.2: The processing scheme of Unobtrusive Sensing of Emotions (USE). It shows how
the physiological signals (i.e., speech and the ECG), the emotions as denoted by people,
personality traits, people’s gender, and the environment are all combined in one ANOVA.
Age was determined but not processed. Note that the ANOVA can also be replaced by a
classifier or an agent, as a module of an AmI [694].
Explanation of the abbreviations: ECG: electrocardiogram; HR: heart rate; F0: fundamental
frequency of pitch; SD: standard deviation; MAD: mean absolute deviation; and ANOVA:
ANalysis Of VAriance.

5.5 Signal processing

This section describes how all of the data was recorded and, subsequently, processed (see
also Figure 5.2). Speech utterances were recorded continuously by means of a standard
Trust multi function headset with microphone. The recording was performed in SoundForge
4.5.278 (sample rate: 44.100 Hz; sample size: 16 bit). Parallel with the speech recording, a
continuous recording of the ECG was done through a modified Polar ECG measurement
belt. The Polar ECG belt was connected to a data acquisition tool (NI USB-6008). Its output
was recorded in a LabVIEW 7.1 program, with a sample rate of 200 Hz.

5.5.1 Signal selection

The speech signal of three participants was not recorded due to technical problems. For one
other participant, the speech signal was too noisy. These four participants were excluded
from further analysis. With four other participants, either a significant amount of noise was
present in their ECG or the signal was even completely absent. These participants were
omitted from further processing.
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Since one of the main aims was to unveil any possible added value of speech and
ECG features to each other, all data was omitted from analysis of the eight participants
whose ECG or speech signals were not recorded appropriately. This resulted in a total of
32 participants (i.e., 16 men and 16 women), whose signals were processed. Regrettably
and surprisingly, the eight participants whose data was not processed, all participated in
the office-like environment. So, 20 participants participated in this research in a home-like
environment and 12 of participants sat down in an office-like environment. Conveniently,
of these 32 participants, men and women were equally present in both environments.

5.5.2 Speech signal

For each participant, approximately 25 minutes of sound was recorded during the study.
However, since only parts in which they spoke are of interest, the parts in which the par-
ticipants did not speak were omitted from further processing. Some preprocessing of the
speech signal was required before the features could actually be extracted from the signal.
We started with the segmentation of the recorded speech signal in such a way that the speech
signal was determined separately for each picture. Next, the abnormalities in the speech sig-
nals were removed. This resolved all technical inconveniences, such as: recorded breathing,
tapping on the table, coughing, cleaning the throat, and yawning. This resulted in a ‘clean’
signal, as is also illustrated in Figures 5.3a and 5.3b.

After the selection of the appropriate speech signal segments and their normalization,
the feature extraction was conducted. Several parameters derived from speech have been
investigated in a variety of settings with respect to their use in the determination of people’s
emotional state. Although no general consensus exists concerning the parameters to be
used, much evidence exists for the standard deviation (SD) of the fundamental frequency
(F0) (SD F0), the intensity of air pressure (I), and the energy of speech (E) [182, 590, 644, 725,
739]. We will limit the set of features to these, as an extensive comparison of speech features
falls beyond the scope of this study.

For a domain [0, T ], the energy (E) is defined as:

1

T

∫ T

0

x2(t) dt, (5.1)

where x(t) is the amplitude or sound pressure of the signal in Pa (Pascal) [54]. Its discrete
equivalent is:

1

N

N−1
∑

i=0

x2(ti), (5.2)

where N is the number of samples.
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(a) A speech signal and its features of a person in a relaxed state.
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(b) A speech signal and its features of a person in a sad, tensed state.

Figure 5.3: Two samples of speech signals from the same person (an adult man) and their
accompanying extracted fundamental frequencies of pitch (F0) (Hz), energy of speech (Pa),
and intensity of air pressure (dB). In both cases, energy and intensity of speech show a sim-
ilar behavior. The difference in variability of F0 between (a) and (b) indicates the difference
in experienced emotions.
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For a domain [0, T ], intensity (I) is defined as:

10 log10

1

T P2
0

∫ T

0

x2(t) dt, (5.3)

where P0 = 2 · 10−5 Pa is the auditory threshold [54]. I is computed over the discrete signal
in the following manner:

10 log10

1

N P2
0

N−1
∑

i=0

x2(ti). (5.4)

It is expressed in dB (decibels) relative to P0.

Both the I and the E are directly calculated over the clean speech signal. To determine
the F0 from the clean speech signal, a fast Fourier transform has to be applied over the
signal. Subsequently, its SD is calculated; see also Eq. 5.5. For a more detailed description of
the processing scheme, we refer to [53].

5.5.3 Heart rate variability (HRV) extraction

From the ECG signal a large number of features can be derived that are said to relate to the
emotional state of people [14, 304, 327, 349, 672, 676]. This research did, however, not aim
to provide an extensive comparison of ECG features. Instead, the use of the combination of
the ECG signal with the speech signal was explored. Therefore, one well-known distinctive
feature of the ECG was chosen: the variance of heart rate (HRV).

The output of the ECG measurement belt has a constant (baseline) value during the
pause between two heart beats. Each new heart beat is characterized by a typical slope
consisting of four elements, called: P, Q, R, and S (see Figure 5.4). A heart beat is said to be

Figure 5.4: A schematic representation of an electrocardiogram (ECG) denoting four R-
waves, from which three R-R intervals can be determined. Subsequently, the heart rate and
its variance (denoted as standard deviation (SD), variability, or mean absolute deviation
(MAD)) can be determined.
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characterized by an R-wave, which is an upward deflection. The HR is calculated from the
intervals between these R-waves (R-R intervals) [14, 327, 672, 676]. The measurement belt
for the ECG signal appeared to be sensitive to movements of the participant. This resulted
in four types of noise that can be distinguished: a heart beat that differs from the normal
PQRS shape (cf. Figure 5.4), heart beats that succeed too quickly, missing heart beats in a
sequence, and no HR signal at all. The ECG signal was checked automatically for all these
types of noise and corrected where necessary.

The ECG signal was segmented into separate signals per stimulus, before it was pro-
cessed. Next, the intervals between the R-waves (R-R intervals) of the ECG signal were
determined. Subsequently, the mean R-R interval was determined. To determine the vari-
ability of the heart rate (HRV) from an ECG, the R-R intervals of the ECG were determined.
Subsequently, two methods were applied for the calculation of the HRV, namely: the vari-
ance (σ2):

1

R

R−1
∑

i=0

(∆i − ∆̄)2 (5.5)

and the Mean Absolute Deviation (MAD):

1

R

R−1
∑

i=0

|∆i − ∆̄| (5.6)

of the R-R intervals ∆i. ∆̄ denotes the average R-R interval, and R denotes the number of
R-R intervals. The SD of the R-R intervals is defined as the square root of Eq. 5.5: σ. Note
that the σ2 as defined in Eq. 5.5 is identical to the total spectral power. This also explains
why comparisons between frequency and time domain measures have often shown that
for every band of an HR power spectrum, there is at least one time-domain correlate [435].
Further, please note that various other measures were applied for the determination of the
HRV [14, 304, 327, 349, 435, 672, 676]. However, with these three measures we expected to
have a good indication of the use of HRV for emotion detection.

5.5.4 Normalization

To tackle intrapersonal differences in the speech signal x(t), the feature series f(t) calculated
from this signal had to be normalized. All feature series calculated were normalized by
subtracting people’s personal baseline µ from the original feature series f(t) [418]:

f̃(t) = f(t) − µ, (5.7)

where f̃(t) denotes the normalized feature series.
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The personal baseline µ was obtained at the start of the study, directly after the in-
structions; see also Section 5.4. This normalization is a standard correction that is often used
in psychophysiological studies and has repeatedly been shown to work [85]. The resulting
data is often denoted as delta or reaction score. These scores are known to be both suitable
and reliable for absolute level comparisons.

The ECG signal was processed without normalization. A normalization of the features
derived from the ECG signal is already included in the calculation of the HRV (cf. Eqs. 5.5
and 5.6 with 5.7). Note that for many of the other features extracted from an ECG signal,
normalization is required.

5.6 Results

This section discusses the results obtained in this study. First, the considerations taken in
the analysis will be presented. Next, in line with the main aims of this study, we will ana-
lyze the combined discriminative power of both the combination of features (i.e., repeated
measures MANOVA (Wilks’ lambda)) and the features separately (i.e., (univariate) repeated
measures ANOVA (Huynh-Feldt)). This is done for two series of analysis, one to assess the
dimensional VA model and one to assess six discrete basic emotions. The factors included
in the analyses are: environment, the personality traits neuroticism and extroversion, and
gender; see also Table 5.2.

5.6.1 Considerations with the analysis

Preliminary analysis of the ECG signal showed that the three parameters SD, the variance,
and MAD of the HR (see Eqs. 5.5 and 5.6) provided similar results. This is in line with what is
reported in the literature [349, 435]. Since the preliminary analysis did not reveal significant
differences among the three measures for HRV and this is supported by the literature, we
have chosen the most common one: the SD of the R-R intervals. Therefore, in the main

Table 5.2: Legend of the factors included in the analyses presented in Section 5.6, particular
in Tables 5.3-5.6.

abbreviation explanation
V valence
A arousal
E environment (or context)
PN personality trait neuroticism
PE personality trait extroversion
G gender
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analysis, variance and MAD of the R-R intervals as measures for HRV were excluded; see
also Figure 5.2. From this point on, the SD of the R-R intervals will simply be denoted as
HRV.

The following factors were also included in the analysis: the environment (i.e., office
versus living room), gender, and the two personality traits extroversion and neuroticism.
Preliminary analysis showed that the other recorded demographical information (see Sec-
tion 5.4) did not influence the emotional responses of the participants. Hence, this informa-
tion was excluded from further analyses (cf. Figure 5.2).

To tackle the problem of finding spurious relationships that can arise when conduct-
ing multiple tests separately, first multivariate analysis was conducted and, subsequently,
univariate analysis. Note that only if multivariate analysis had revealed effects was univari-
ate analysis to be conducted to further unravel this effect. Alternatively, this problem could
have been tackled by a (modified) Bonferroni adjustment, which ensures the probability of
Type I errors ≤ .050 [499]. However, this has the drawback that there is no consensus on the
modification of Bonferroni.

All tests will be reported with their degrees of freedom, power, and level of signifi-
cance. If the level of significance is close to zero, this will be denoted with p < .001, instead
of providing an exact statistic. As measure of effect size partial eta squared (η2) will be re-
ported to indicate the proportion of variance accounted for (i.e., a generalization of r/r2 and
R/R2 in correlation/regression analysis) [737]. The threshold for reporting results is sharp
(i.e., p ≤ .010) and, hence, ensures reliable results. Where interactions appeared that exceed
the order four, they have been ignored, as they are nearly impossible to interpret. Otherwise,
all interaction effects will be reported.

5.6.2 The (dimensional) valence-arousal (VA) model

In Table 5.3 the results of a repeated measures MANOVA are presented. These results relate
the four features derived from the speech and ECG model onto the dimensional VA model.
Results on both the integral VA model and its two dimensions are presented. Table 5.3
denotes that with the MANOVA 90% of the variance of the VA model can be explained.
The results on the distinct dimensions confirm this result with respectively 88% and 99%
explained variance for the valence and arousal dimensions.

When the factors environment, the personality traits neuroticism and extroversion, and
gender were included in the analysis, a high level of explained variance was obtained as
well. However, the power of the MANOVAs and the explained variance were much lower
than when these factors were ignored; see Table 5.3. Taken together, these results confirm
the efficiency of the small set of features as compiled for this research and suggest that brute
force processing and extraction of large numbers of features (e.g., > 1000 [590, 727]) is not
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Table 5.3: Results of the repeated measures MANOVA on the valence-arousal (VA) model
and its distinct dimensions. The threshold for significance was set to p ≤ .010.

V A E PN PE G Specification of effect
• F(8,74) = 67.835, p < .001, η2 = .880
• • F(8,74) = 3.752, p = .001, η2 = .289
• • F(8,74) = 4.426, p < .001, η2 = .315
• • • F(8,74) = 2.774, p = .010, η2 = .231
• • • F(8,74) = 3.419, p = .002, η2 = .270

• F(4,17) = 653.941, p < .001, η2 = .994
• • F(4,17) = 9.325, p < .001, η2 = .687

• • F(8,74) = 82.962, p < .001, η2 = .900
• • • F(8,74) = 4.431, p < .001, η2 = .324
• • • F(8,74) = 4.168, p < .001, η2 = .311
• • • F(8,74) = 2.895, p = .007, η2 = .238

required for affective computing.

To unravel the influence of each of the four features, a repeated measures ANOVA was
executed for each of them. The results of these analyses are presented in Table 5.4. These
analyses provide a much more subtle image of the features included in the MANOVA. We
will now first discuss the results on the three speech features (i.e., SD F0, intensity I, and
energy E) and, subsequently, the ECG feature HRV.

SD F0 by itself had little predictive power and even with one additional factor included
no strong results were found. When both environment and the personality trait neuroticism
were taken into account, an effect was found for the VA model; see Table 5.4. This effect
can be mainly attributed to the dimension valence for which SD F0 was sensitive, when
two factors were included; see Table 5.4. For the dimension arousal, with two levels to
distinguish, no effect was found.

I showed to have an excellent predictive power and was able to explain almost all
variance with 98% for the VA model and both of its dimensions; Table 5.4. Also strong effects
were found on the VA model and its dimension when the environment and the personality
trait were taken into account. However, these effects are not even close to the magnitude
of the effects found when these factors were not taken into account. So, the environment,
personality traits, and gender seem to have little influence, if any, on the intensity of speech
as indicator for valence and arousal.

The feature E proved to be a good indicator for the dimension arousal of the VA model;
see Table 5.4. Analysis showed that additional factors were of little influence on this effect. In
addition, an effect was found on the VA model when both the environment and gender were
taken into account; however, this was only marginally below the threshold of reporting. So,
E seems to be a good and robust indicator for experienced valence.
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Table 5.4: Results of the repeated measures ANOVAs on the valence-arousal (VA) model and
its distinct dimensions. The threshold for significance was set to p ≤ .010.

V A E PN PE G Specification of effect
SD F0
• • • F(2,40) = 6.136, p = .009, η2 = .235
• • • F(2,40) = 6.327, p = .008, η2 = .240
• • • F(2,40) = 8.135, p = .010, η2 = .289
• • • • F(2,40) = 5.924, p = .010, η2 = .229
Intensity
• F(2,40) = 817.149, p < .001, η2 = .976
• • F(2,40) = 13.677, p < .001, η2 = .406

• F(1,20) = 1095.287, p < .001, η2 = .982
• • F(2,40) = 1060.802, p < .001, η2 = .981
• • • F(2,40) = 52.611, p < .001, η2 = .341
• • • F(2,40) = 63.491, p < .001, η2 = .384
Energy

• F(1,20) = 24.123, p < .001, η2 = .547
• • • • F(2,40) = 5.254, p = .009, η2 = .208
HRV
• • • F(2,40) = 6.872, p = .005, η2 = .256
• • • F(2,40) = 9.463, p = .001, η2 = .321
• • • F(2,40) = 6.354, p = .007, η2 = .241

• • • F(1,20) = 8.493, p = .009, η2 = .298
• • • F(1,20) = 8.772, p = .008, η2 = .305

• • • • F(2,40) = 7.426, p = .004, η2 = .271
• • • • F(2,40) = 9.736, p = .001, η2 = .327

The ECG feature HRV is frequently used as an indicator for emotions. In the perspec-
tive of the VA model, it has been reported to indicate both the experienced valence and the
experienced arousal. These results are confirmed by the current study; see Table 5.4. How-
ever, for the VA model as well as for its distinct dimensions, the factors environment, the
personality trait neuroticism, and gender proved to be of influence. In contrast with the
speech features, the power of HRV as indicator for the VA model was only unveiled when
these factors were included in the ANOVA; see Table 5.4.

5.6.3 The six basic emotions

In Table 5.5 the results of a repeated measures MANOVA are presented that mapped the
four features derived from the speech and ECG model onto the six basic emotions. The
MANOVA showed an effect of the four features on the six basic emotions, with and without
other factors included. The effect of the factors environment, the personality trait neuroti-
cism, and gender were limited. The personality trait extroversion was of no influence.
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Table 5.5: Results of the repeated measures MANOVA on the six basic emotions. The thresh-
old for significance was set to p ≤ .010.

E PN PE G Specification of effect
F(20,400) = 4.330, p < .001, η2 = .179

• F(20,400) = 2.332, p = .001, η2 = .106
• F(20,400) = 4.777, p < .001, η2 = .194

• • F(20,400) = 4.710, p < .001, η2 = .191
• • F(20,400) = 4.869, p < .001, η2 = .196

• • F(20,400) = 3.951, p < .001, η2 = .166

To gain understanding in the influence of the four features, repeated measures
ANOVAs were executed for each of them. The results of these analyses are presented in
Table 5.6. First, we will discuss the results of the three speech features (i.e., SD F0, intensity
I, and energy E). Second, the results of the ECG feature HRV will be discussed. In none of
the analyses did the personality trait extroversion show any influence; therefore, this factor
will not be mentioned further on.

SD F0 by itself showed to have little predictive power; see Table 5.6. Only when either
environment and the personality trait neuroticism or environment and gender were taken
into account was an effect found. I showed to have no predictive power at all, neither by
itself nor in combination with other factors. E showed to have a good predictive power by
itself. The four factors included in the analysis were of no influence on E ; see Table 5.6.

Of all four features, HRV showed to have the highest predictive power. However, this
was only the case when two out of the three factors included were taken into account. In
each of these three cases, roughly 30% of the variance in the data could be explained.

Table 5.6: Results of the repeated measures ANOVAs on the six basic emotions. The thresh-
old for significance was set to p ≤ .010. For the Intensity (I) of speech no results are reported
as none of them exceeded the threshold.

E PN PE G Specification of effect
SD F0
• • F(5,100) = 6.292, p = .006, η2 = .239
• • F(5,100) = 6.441, p = .005, η2 = .244
Energy

F(5,100) = 6.352, p < .001, η2 = .241
HRV
• • F(5,100) = 7.078, p = .004, η2 = .261
• • F(5,100) = 9.355, p = .001, η2 = .319

• • F(5,100) = 6.601, p = .006, η2 = .248
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5.6.4 The valence-arousal (VA) model versus basic emotions

When the VA model is compared with the basic emotions model, the following ten main
conclusions can be drawn:

• Both emotion representations can handle the variation in participants, even without
including additional information such as the environment, personality traits, and gen-
der; see Tables 5.3- 5.6.

• Using the VA model a very high amount of variance can be explained: 90%. This is
much higher than with the basic emotions: 18% (cf. Tables 5.3 and 5.5).

• Many more effects were found with the VA model than with the basic emotions as
representation for emotions (cf. Tables 5.3 and 5.5 and Tables 5.4 and 5.6).

• The SD F0 showed to have a good predictive power with both emotion representations;
see Tables 5.4 and 5.6.

• The intensity of speech (I) is by far the most informative feature for the VA model;
see Table 5.4. In contrast, with the basic emotions it has no predictive power at all; see
Table 5.6.

• The energy of speech (E) was a very good predictive power for arousal and a good
predictive power for the six basic emotions; see Tables 5.4 and 5.6.

• The ECG feature HRV showed to be heavily influenced by multiple factors that were
included in the analysis. However, when these are taken into account, HRV can serve
as a rich source of information to unveil emotions; see Tables 5.4 and 5.6.

• The personality trait extroversion had no significant influence on the participants’ ex-
perience of emotions; see Tables 5.3- 5.6.

• Gender has some influence, although limited; see Tables 5.4 and 5.6. For the speech
signal this could be partly explained by the normalization of the signal.

• Although approached from another angle, both emotion representations as treated in
this chapter share many characteristics. This is mainly because a discrete representa-
tion of the VA model was used that can distinguish six compounds, similar to the six
basic emotions.

The current study illustrates that the representation of emotions remains a topic of de-
bate; see also Sections 5.2 and 5.3. In practice, both discrete basic emotions and dimensional
models are applied [105, 176, 202, 452]. This study compared these two representations.
Data of the current study suggests that the VA model is most appropriate, as the explained
variance is much higher than with the basic emotions: 90% versus 18%. As Eerola and
Vuoskoski [176] state, the resolution of the discrete and categorical models is poorer. More-
over, current results provide more support for the VA model than for suggest basic emotions
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(cf. [202]). The discrepancy in explained variance of the present analyses (see Tables 5.3 –
5.6) can be attributed to the variation between the stimuli assigned to one basic emotion.

With both models of emotion, many interaction effects have been reported in the ac-
companying sections, in particular in relation to HRV. However, even twice as many effects
would have been reported if the threshold for significance was set to p ≤ .050, as is most
often done. More than anything else this illustrates the complexity of people and their emo-
tional state. Moreover, more than a choice for one of both emotion models, the current data
suggests that a holistic model would be most appropriate. This also explains the variation in
results reported in the literature, in particular in research that goes from lab to life [680]. De-
spite its drawbacks, studies that aim to bridge this gap and take into account multiple factors
should be encouraged. With the current study such an attempt has been made; however, as
the data illustrate, many more are needed.

5.7 Discussion

This section will discuss the results presented in the previous section further and relate them
to the current state-of-the-art research. As was described in the introduction (Section 5.1),
this research features five key issues, namely: i) hybrid (i.e., speech + biosignals) affective
computing, ii) modeling emotion, iii) including environment (or context), iv) taking peo-
ple’s personality into account, and v) unveiling the possible importance of demographic
information. Each of the these key issues will be discussed in this section. Next, a brief
general discussion will be provided. We will end this chapter with some conclusions.

5.7.1 The five issues under investigation

Nowadays, not only speech and computer vision but also biosignals such as ECG can be
applied completely unobtrusively [10, 138, 257, 414, 438, 508, 513, 728, 744]. Speech and
biosignals are par excellence suitable for personalized and ubiquitous affective computing
technology. However, surprisingly, this combination has hardly been explored; except for
the author’s own work [676] (see Chapters 5 and 6), the only work the author is acquainted
with that applied this combination is that of Kim et al. [336, 337, 339, 340]. Processing both
signals in parallel can, however, be done conveniently, as is illustrated by this study; see also
Figure 5.2. Moreover, as is shown in this chapter, the combination of speech and biosignals
provides a potentially rich source of complementary information. This was confirmed by the
analyses presented in the previous section; see also Tables 5.3-5.6. True bimodal (or hybrid)
including biosignals and either speech or vision-based techniques should be explored more
often, despite the various methodological and technical hurdles that need to be taken for
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its execution. Moreover, without any doubt, trimodal (i.e., biosignals, speech, and vision-
based) affective computing would also be fruitful.

To ensure the correct assessment of the experienced emotions of people, the IAPS set
was used in the current research [105, 374, 452]. Throughout the years, IAPS has become a
ground truth for emotion research, as it is repeatedly well validated. Since the representation
of emotions is still a topic of debate, both the dimensional VA model and the categorical
basic emotions were employed, using the same set of IAPS pictures [374, 452]. This enabled
a one-on-one comparison between both emotion representations [105, 176, 202, 452, 567].
Although the various representations of emotions are frequently discussed, it is rare that
two (or more) models are mapped upon affective signals (cf. [676]). However, par excellence,
the setup of the current research facilitated this. The results as discussed in the previous
section support both models. However, more convincing effects have been found for the
dimensional VA model. Although further studies should be conducted on the mapping of
affective computing techniques upon models of emotion, the results of the current study
provide a clear support for the VA model.

That context plays its role in human functioning (e.g., information processing) is gener-
ally accepted. However, how to operationalize such an abstract concept? Moreover, is con-
text not different for us all (e.g., because it depends on our memories)? To enable a feasible
operationalization of the concept context it was brought down to the concept environment.
The same study was conducted in two environments. Half of the participants participated
in a living room setting and half of them participated in an office setting. This enabled
a comparison between both settings. Both repeated measures MANOVAs (see Tables 5.3
and 5.5) showed a (very) sharp decline in power and explained variance when environment
was taken into account as a factor. This implies that including environment as a factor intro-
duces noise instead of an additional source of information that can explain the variance in
the data. However, the (univariate) ANOVAs, with both emotion representations (a separate
one for each of the four features) provide another point of view. With these analyses environ-
ment did help to unveil emotions. This suggests that the combination of features chosen for
this study can handle the influence of the environment (or context) excellently. This stresses
the complementary characteristics of the features chosen, as was already claimed earlier on
in this chapter. In parallel, it identifies the influence environments do have on physiological
responses to emotions. Follow-up research should explore this intriguing finding further.

The personality traits neuroticism and extroversion, both known to influence the ex-
perience of emotions [126, 422, 442, 453, 676], were assessed to determine their relation to
the affective state of the participants. Independent of the emotion representation chosen, the
personality trait extroversion has shown to be of hardly any influence. This is in line with an
earlier study by the author [676] but deviates from other literature [126, 422, 442]. In contrast,
the personality trait neuroticism has shown to be of influence, with both emotion represen-
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tations. However, its influence depended heavily on the emotion representation chosen.
With the dimensional VA model, the repeated measures MANOVA (see Table 5.3) showed
a (very) sharp decline in power and explained variance when environment was taken into
account as a factor. As with the environment, this implies that including the personality trait
neuroticism as a factor introduces noise instead of an additional source of information that
can explain the variance in the data. In contrast, with the six basic emotions, the repeated
measures MANOVA (see Table 5.5) showed a small increase in both power and explained
variance when environment was taken into account as a factor. The (univariate) ANOVAs,
of both representations (see Tables 5.4 and 5.6) reveal that the personality trait neuroticism
is of influence on the distinct features, however, only in combination with either the envi-
ronment, gender, or both. So, personality traits seem to play their role in our emotional
experiences and their reflection in our speech and ECG; however, it is a complex interplay
of factors, which may be expected to be challenging to unveil.

Various demographic information was gathered on the participants, namely: level of
education, age, nationality, and gender. The possible effect of these factors was assessed with
preliminary analyses. These analyses have not been reported for reasons of brevity. The pre-
liminary analysis showed the absence of an effect due to the level of education; hence, this
factor was excluded from further analysis. However, this lack of effect can be explained by
the small variance in level of education between the participants. Age influenced neither
the reported emotions nor the physiological signals accompanying them. This is in contrast
with some of the literature that states that age is of importance [361]. This is even specifically
shown for cardiovascular reactivity on psychological stress [390, 661]. This lack of effect can
be explained by the skewed distribution as well as by the limited variance of the age of the
participants; see also Section 5.4. The nationality of the participants was heavily skewed
towards Dutch: 26 of the 32 participants on which the analyses were conducted did have a
Dutch nationality. Therefore, the choice was made to divide the participants having a Dutch
and non-Dutch nationality (i.e., consisting of 4 different nationalities). However, this analy-
sis did not reveal any effect on this factor. Nationality was included as a representation of
both cultural and ethnical factors. Both these factors have been reported to be of influence
on physiological responses in relation to emotions [603]. More than anything else, it should
be concluded that this research was not optimized for the assessment of this factor, which
explains the absence of any effect. The gender of the 40 participants was perfectly balanced;
so, in contrast with level of education and age, for this factor a maximal variance was ob-
tained. In line with the literature, gender was shown to be of effect [392, 661]. However,
this effect was marginal and additional research is needed to unveil the exact influence of
gender on the relation between biosignals and speech and emotions.
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5.7.2 Conclusion

The results of this study show that the three speech measures (i.e., SD F0, I, and E) in
combination with only HRV already provide a reliable, robust, and unobtrusive method
to reflect user’s affective state. Of course, many more features could be derived from both
the speech signal [182, 590, 644, 725, 739] and the ECG [14, 85, 105, 481, 538]. However, this
was not the aim of this study and also appeared to be unnecessary. The current results are
already excellent with 90% explained variance for the VA model (see Section 5.6), which also
challenges the claim that personalized processing of such signals is required.

The debate on how to define emotions remains intriguing, as it is so close to our
everyday lives. However, for personal and ubiquitous computing technology practical
considerations should also be taken into account. The processing scheme introduced in
this study enables the unobtrusive assessment of affect. In practice this can be achieved
through either sensor networks or wearable sensors; for example, as embedded in elec-
tronic textiles [728, 744]. Both of these branches of engineering have flourished since the
start of the current century. One can only conclude that this technology is rapidly ma-
turing [10, 138, 438, 508] and, consequently, is applied in a variety of domains; for exam-
ple, health monitoring [5, 138, 257, 438, 508, 728, 744]. While the underlying technology
is becoming both more miniaturized and more robust [257, 438, 508], various probes have
been introduced. Generic, ambulatory, wearable ECG systems [414, 513], emotion-aware
chairs [18], and digital plasters [728] have been introduced. It seems that sensor networks’
and wearable sensors’ main drawback is that of many wireless applications, such as your
laptop: battery life [5, 257, 438, 728, 744].

All in all, ubiquitous computing, following AI, has to embrace emotion as an essential
element in pursuing its next level of development. It is surprising that the combination of
speech and biosignals has hardly been used before to unveil people’s emotions. Par excel-
lence, this combination of signals has been shown to be suitable for unobtrusive emotion
recognition. This having been said, the current study provides a significant leap forward in
bringing personal ubiquitous affective computing to practice. However, such bold claims
should not be made, founded on only one study. Moreover, this study used a subset of
the IAPS database and although they again showed to be successful in triggering emotions,
this can still be considered as a thin foundation for follow-up research. Therefore, an al-
most identical study to the one presented in the current chapter will be presented in the
next chapter. The study presented in the next chapter differs only with respect to the stimuli
used to elicit emotions (cf. [8]). The experiment in the next chapter, Chapter 6, uses the
movie fragments introduced in Chapter 3 to elicit emotions.
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Abstract

This chapter presents a study that replicated the study presented in the previous chapter,
with as its only difference the type of stimuli used to elicit the participants’ emotions. So,
this study also explores the rare combination of speech, electrocardiogram, and a revised Self-
Assessment Mannequin (SAM) to assess people’s emotions. Forty people watched movie
scenes as were introduced in Chapters 3 and 4 in either an office or a living room environ-
ment. Additionally, their scores for the personality traits neuroticism and extroversion and
demographic information (i.e., gender, nationality, and level of education) was included in
the analysis. The resulting data was analyzed using both basic emotion categories and the
valence-arousal model, which enabled a comparison between both representations. It was
shown that, when people’s gender is taken into account, both heart rate variability (HRV,
derived from the ECG) and the standard deviation of the fundamental frequency of speech
indicate people’s experienced valence and arousal, in parallel. As such, both measures seem
to validate each other. However, the explained variance is much lower than on the data of
the previous chapter. For the valence-arousal model, the explained variance was reasonable:
43%. In contrast, for the basic emotions, the explained variance was low: 21%. So, in line
with the previous chapter, this study also supports in favor of the valence-arousal model and
questions the six basic emotions. Further comparison of both studies confirmed that, inde-
pendent of emotion representation, the bimodal ASP approach taken is robust in penetrating
emotions. In particular, this is confirmed by the combination of features from the two modal-
ities. The distinct features from speech and HRV reveal a more subtle picture in which the
several factors do appear to play their role. An exception is the personality trait extroversion,
which seems to be of hardly any influence at all.

This chapter is a thoroughly revised version of:

Broek, E.L. van den, Schut, M.H., Westerink, J.H.D.M., & Tuinenbreijer, K. (2009). Unobtrusive

Sensing of Emotions (USE). Journal of Ambient Intelligence and Smart Environments, 1(3), 287–

299. [Thematic Issue: Contribution of Artificial Intelligence to AmI]



6.1 Introduction

6.1 Introduction

A decade ago, Ducatel, Bogdanowicz, Scapolo, Leijten, and Burgelman [169] expressed a
similar concern in “Scenarios for Ambient Intelligence in 2010” on behalf of the EU’s IST Ad-
visory Group. Two of their key notions were already assessed in the previous chapter and
will be further explored in the current chapter: emotion and unobtrusive measurements.The
lessons learned in Artificial Intelligence (AI), Cybernetics, psychophysiology, and other dis-
ciplines will be taken into account, which will also make it a truly interdisciplinary research.

Before continuing this research, let me take a step back ... in time. Let me cherish re-
marks made on machine intelligence, either long or not so lang ago. AI pioneer Herbert A.
Simon [611] was the first to denote the importance of emotion for AI. Minsky [454, Chap-
ter 16, p. 163] confirmed this by stating: The question is not whether intelligent machines can
have emotions, but whether machines can be intelligent without emotions. Nevertheless, in prac-
tice emotions were mostly ignored in the quest for intelligent machines until Picard [521]
introduced the field affective computing. Since then, the importance of emotion for AI was
slowly acknowledged [455]. However, it needs to be stressed that emotions are not only of
crucial importance for true AI but are at least as important for Ambient Intelligence (AmI).
This has already been acknowledged by Emile Aarts [1, p. 14]: Ubiquitous-computing environ-
ments should exhibit some form of emotion to make them truly intelligent. To this end, the system’s
self-adaptive capabilities should detect user moods and react accordingly.

This chapter continues the quest for ubiquitous affective computing. In line with the
previous chapter, this study also respects the complexity of emotions as well as the current
limitations of unobtrusive physiological measurement. The study reported in this chapter is
a replication of the study reported in the previous chapter, except for the stimuli used to elicit
the emotions from the participants. To refrain from major redundancies in this monograph,
this chapter is a compressed version of the article it originates from.

First, I will introduce the construct emotion (Section 6.2) by taking a step back and
briefly discussing the work that served as the foundation of the definition of emotion used
in the previous chapter. Next, in Section 6.3, I will denote the aspects on which the study
reported in this section deviates from that reported in the previous chapter. Sections 6.4
and 6.5 will describe respectively the preparation of the analysis and its results. Subse-
quently, in Section 6.6 the current study will be compared with the one presented in the
previous chapter. Last, in Section 6.7, I will close this chapter with some final words on the
work presented here.

101



6 Static versus dynamic stimuli

6.2 Emotion

A lengthy debate on the topic of emotion would be justified; however, this falls way beyond
the scope of the current chapter, it even falls beyond the scope of this monograph. Hence,
in this chapter there will be no overview of the various emotion theories and the levels on
which emotions can be described either. Instead, I will take the elaboration on the definition
of emotion as provided in the previous chapter as starting point. The definition presented
in Chapter 5 was based on recent work by Izard [302] and the comments that followed this
work [302]. Carroll E. Izard [302] took the work Kleinginna and Kleinginna [350] as starting
point. For a thoroughly composed definition this will be used as a starting point. In line
with Izard [302], I will also go back to this work.

Kleinginna and Kleinginna [350] compiled a list of 92 definitions and 9 skeptical state-
ments about emotion. Regrettably, they had to conclude that psychologists cannot agree on
many distinguishing characteristics of emotions. Therefore, they proposed a working defi-
nition: Emotion is a complex set of interactions among subjective and objective factors, me-
diated by neural/hormonal systems, which can (a) give rise to affective experiences such as
feelings of arousal and pleasure / displeasure; (b) generate cognitive processes such as emo-
tionally relevant perceptual effects, appraisals, labeling processes; (c) activate widespread
physiological adjustments to the arousing conditions; and (d) lead to behavior that is often,
but not always, expressive, goal directed, and adaptive. I will now adopt this definition as
working definition, instead of that of Izard [302], as presented in Chapter 5.

Kleinginna and Kleinginna [350] also addressed the influence of emotions on people’s
cognitive processes: issues (b) and (d). Hence, emotions by themselves should be taken
into account; but, so should their effect on cognitive processes (e.g., attention, visual percep-
tion, and memory) and, thereby, our functioning. This emphasizes the importance of taking
emotions into account in AmI. Moreover, Kleinginna and Kleinginna [350] addressed the
influence of emotions on our physiology. This is nicely in line with the main objective of this
monograph: Affective Signal Processing (ASP): Unraveling the mystery of emotions.

In line with the frequently adopted circumplex or valence-arousal (VA) model of emo-
tions [372, 443, 535, 647], the definition of Kleinginna and Kleinginna [350] distinguishes
arousal and valence (i.e., pleasure / displeasure). The valence-arousal model denotes va-
lence and arousal as two independent bipolar factors that describe emotions. Although the
VA model is successful, it has two severe limitations. First, no emotions are identified with
high scores, either positive or negative, on either the valence or the arousal axis [372]. Sec-
ond, the model cannot handle mixed emotions; that is, parallel experience of both positive
and negative valence [79] (see also Chapters 3 and 4).

To enable the identification of mixed emotions and provide a suitable processing
scheme, the valence-arousal model is sometimes extended [79, 357] (cf. Chapters 3-5). Such
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an extended VA model incorporates, instead of one bipolar valence dimension, two unipo-
lar valence dimensions: one for positive and one for negative valence. Hence, the extended
valence-arousal model incorporates three dimensions, instead of two. This approach was
also adopted for the current study.

6.3 Method

This section is compressed similarly to the Method section in Chapter 5. This will facilitate
the comparison between both studies, which will have the focus of this chapter. Only those
elements that deviate from the work presented in Chapter 5 will be reported here.

The same 40 volunteers participated in this study as did in the study presented in
Chapter 5 and they were treated identically. The speech and ECG signals were recorded
with the same devices and processed with the same software as has been reported in Chap-
ter 5. The results of the revised, short scale of the Eysenck Personality Questionnaire (EPQ-
RSS) [187] completed by the participants in Chapter 5 were also included in the analyses of
the current study. For details, see the Methods section of Chapter 5

Instead of looking at IAPS pictures [374, 452], as was the case in the study presented
in Chapter 5, dynamic stimuli were chosen [235, 237, 570, 700, 701]. To elicit an emotional
response, the participants watched a selection of the six movie scenes that were introduced
in Chapters 3 and 4. The movie scenes were presented on the same screen as the IAPS
images of Chapter 5 were. Each of the six movie scenes that were shown had a duration
of 3 minutes and 18 seconds. After each scene, the participants had 30 seconds to describe
the most emotional part of the scene, followed by a rest period of 60 seconds. During these
90 seconds (speaking and resting), a gray screen was shown. The experiment started and
finished, displaying a gray screen during 90 seconds.

6.4 Preparation for analysis

The speech signal of two participants was not recorded due to technical problems. The
speech signals of two other participants were too noisy. The speech signals of these four
participants were excluded from further analyses. With nine participants, either a signifi-
cant amount of noise was present in their ECG or the signal was completely absent. The
ECG signals of these participants were omitted from further processing. In total, 13 cor-
ruptions of signals were detected in the signals of 11 participants. So, the recordings of 2

participants suffered from 2 types of noise. Through interpolation, corrections could have
been made for the absence of this data. However, this would have decreased the reliability
of the analyses done. Therefore, we chose to omit all data for participants for whom prob-
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Table 6.1: The six film scenes with the average ratings given by the participants on the
positive valence, negative valence, and arousal Likert scales. From the positive and negative
valence ratings, three valence categories can be derived: neutral, positive, and negative.
Using the scores on arousal, two arousal categories can be determined: low and high

film scene valence arousal
positive negative category score category

Color bars 0.13 2.51 neutral 0.49 low
Final Destina-
tion

2.59 4.38 neutral 6.54 high

The bear 5.79 0.74 positive 3.49 low
Tarzan 7.31 0.26 positive 4.77 high
Pink flamingos 0.49 7.18 negative 6.00 low‡

Cry freedom 0.56 7.90 negative 7.69 high
Average 2.81 3.83 4.83
‡ This score is higher than average. Nevertheless, it has been categorized as
low. This was done for two reasons: 1) The experienced arousal is low rela-
tive to the other film scene with which a negative valence was experienced
and 2) This categorization facilitated a balanced design, which enabled the
preferred statistical analyses.

lems were encountered with the recordings. This resulted in data from 29 participants that
could be analyzed.

Of each of the 29 participants, the sound recorded during the study lasted approxi-
mately 25 minutes; however, only the parts in which the participants spoke were of interest.
Those parts in which the participants did not speak were automatically omitted from the
speech signal processing pipeline.

To assess the emotions experienced by the participants, again the Digital Rating System
(DRS) was used, as was introduced in Chapter 5. As in the study presented in Chapter 5,
the DRS included three scales: positive valence, negative valence, and arousal, see also Ta-
ble 6.1. For each film scene, the average ratings were calculated on each of the three scales
over all participants. This resulted in a classification of the film scenes into two categories
(i.e., high and low) for each of the three scales: positive, negative, and arousal. From these
classifications, we derived three categories for valence: positive, negative and neutral. The
category neutral denotes neither a positive valence nor a negative valence. In addition,
two categories for arousal were derived: high arousal and low arousal. Together, these two
categorized dimensions of the VA model depicted six emotion classes. Each of the 6 basic
emotions was represented in this research by one film fragment.
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Table 6.2: Legend of the factors included in the analyses presented in Section 6.5, particularly
in Tables 6.3-6.6.

abbreviation explanation
V valence
A arousal
E environment (or context)
PN personality trait neuroticism
PE personality trait extroversion
G gender

6.5 Results

Here I will discusses the results obtained in this study. First, the considerations taken in the
analysis will be presented. Next, in line with the main aims of this study, we will analyze the
combined discriminative power of both the combination of features (i.e., repeated measures
MANOVA (Wilks’ lambda)) and the features separately (i.e., (univariate) repeated measures
ANOVA (Huynh-Feldt)). This will be done for two series of analysis, one to assess the
dimensional VA model and one to assess six discrete basic emotions. The factors included
in the analyses are: environment, the personality traits neuroticism and extroversion, and
gender; see also Table 6.2.

6.5.1 Considerations with the analysis

The preliminary analysis of the ECG signal showed that the SD, the variance, and MAD of
the heart rate (see Eqs. 5.5 and 5.6) provided similar results. This is in line with both the
study presented in Chapter 5 and what is reported in the literature [349, 435]. Also with
the current study, we have taken the SD of the R-R intervals as measure for HRV; see also
Figure 5.2. Consequently, from this point on, the SD of the R-R intervals will simply be
denoted as HRV.

The following factors were also included in the analysis: the environment (i.e., office
versus living room), gender, and the two personality traits extroversion and neuroticism.
Preliminary analysis showed that the other recorded demographical information (e.g., age;
see Section 5.4 of Chapter 5) did not influence the emotional responses of the participants.
Hence, this information was excluded from further analyses (cf. Figure 5.2).

As measure of effect size partial eta squared (η2) will be reported to indicate the
proportion of variance accounted for (i.e., a generalization of r/r2 and R/R2 in correla-
tion/regression analysis) [737]. The threshold for reporting results is the same as for the
study reported in Chapter 5: p ≤ .010 and, hence, ensures reliable results.
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Table 6.3: Results of the repeated measures MANOVA on the valence-arousal (VA) model
and its distinct dimensions. The threshold for significance was set to p ≤ .010.

V A E PN PE G Specification of effect
• F(8,66) = 4.490, p < .001, η2 = .375
• • F(8,66) = 2.850, p = .009, η2 = .257

• • F(4,15) = 4.999, p = .009, η2 = .571
• • F(8,66) = 6.192, p < .001, η2 = .429
• • • • F(8,66) = 3.365, p = .003, η2 = .290

6.5.2 The (dimensional) valence-arousal (VA) model

In Table 6.3 the results of a repeated measures MANOVA are presented that mapped the four
features derived from the speech and ECG model onto the dimensional VA model. Results
of both the integral VA model and its two dimensions are presented. Table 6.3 denotes that
43% of the variance of the VA model can be explained with the MANOVA. The results on
the distinct dimensions confirm this result with respectively 38% and 57% (when including
gender) explained variance for the valence and arousal dimensions.

When the factor gender was included in the analysis, good results were obtained as
well. However, including the factors environment and the personality traits neuroticism
and extroversion only seemed to add noise to the MANOVA model. The power of the
MANOVAs and the explained variance were much lower than when these factors were in-
cluded. All in all, the assessment of emotions based on the VA model using the four features
selected seemed to be robust with respect to influences of environment (or context) and per-
sonality traits.

To unravel the influence of each of the four features, a repeated measures ANOVA was
executed for each of them. The results of these analyses are presented in Table 6.4. These
analyses provide a much more subtle image of the features included in the MANOVA. We
will now first discuss the results on the three speech features (i.e., SD F0, intensity I, and
energy E) and, subsequently, the ECG feature HRV.

SD F0 was shown to have a good predictive power and was able to explain almost
respectively 31% and 42% of all variance for the valence and arousal dimensions of the VA
model (when combined with gender information); see Table 6.4. In contrast, for the complete
VA model SD F0 had little predictive power. Additional information reduced the power of
the model instead of improving it. Effects that exceeded the threshold were not found in
any of the analyses for either arousal or valence on the I or the E .

In the perspective of the VA model, HRV has been reported to indicate both the ex-
perienced valence and the experienced arousal. These results were firmly confirmed by the
current study; see Table 6.4. Sixty-two percent of all variance in the VA model was explained
by solely the HRV of the participants. With 58% explained variance for the valence dimen-
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Table 6.4: Results of the repeated measures ANOVAs on the valence-arousal (VA) model and
its distinct dimensions. The threshold for significance was set to p ≤ .010. For the Intensity
(I) and Energy (E) of speech no results are reported as none of them exceeded the threshold.

V A E PN PE G Specification of effect
SD F0
• F(2,36) = 8.186, p = .001, η2 = .313
• • • F(2,36) = 7.435, p = .002, η2 = .292

• • F(1,18) = 12.863, p < .001, η2 = .417
HRV
• F(2,36) = 24.937, p < .001, η2 = .581
• • • F(2,36) = 10.307, p < .001, η2 = .364

• • • F(1,18) = 16.318, p < .001, η2 = .475
• • • F(1,18) = 8.700, p = .009, η2 = .326

• • F(2,36) = 29.089, p < .001, η2 = .618
• • • F(2,36) = 10.135, p < .001, η2 = .360
• • • • F(2,36) = 15.041, p < .001, η2 = .455

sion, this dimension seems to have contributed most to this result. For the arousal dimension
effects were only found in interaction with gender and either environment or the personal-
ity trait extroversion; see Table 6.4. The explained variance of both the VA model and its
dimension valence decreased when additional factors were taken into account. Hence, the
complete model as well as one of its dimensions was not sensitive to various interpersonal
factors, which is very convenient for many applications.

6.5.3 The six basic emotions

Table 6.5 presents the results of a repeated measures MANOVA that mapped the four fea-
tures derived from the speech and ECG model onto the six basic emotions. The MANOVA
showed an effect of the four features on the six basic emotions, with and without other fac-
tors included. Table 6.5 denotes that with the MANOVA 21% of the variance of the six emo-
tions can be explained, which is not much. When other factors are included in the analysis,
the power of the analysis declines significantly. Effects of the personality traits neuroticism
and extroversion were not found at all. So, the combination of the four features explains

Table 6.5: Results of the repeated measures MANOVA on the six basic emotions. The thresh-
old for significance was set to p ≤ .010.

E PN PE G Specification of effect
F(20,360) = 4.764, p < .001, η2 = .210

• F(20,360) = 2.659, p < .001, η2 = .130
• F(20,360) = 2.704, p < .001, η2 = .132

• • F(20,360) = 2.362, p < .001, η2 = .118
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little of the variance between the six basic emotions. However, the model obtained is robust
to the various factors included in this study and, hence, as such is robust.

To gain understanding of the influence of the four features, repeated measures
ANOVAs were executed for each of them. The results of these analyses are presented in
Table 6.6. First, we will discuss the results of the speech features SD F0. Second, the results
of the ECG feature HRV will be discussed. In none of the analyses were the speech features
intensity I and energy E or the personality traits neuroticism and extroversion shown to be
of any influence; therefore, these features and factors will not be mentioned further on.

SD F0 by itself was shown to have insufficient power; see Table 6.6. Only when the
factors gender with or without the personality trait extroversion were taken into account
was an effect found. However, even then the explained variance was limited. The speech
features intensity I and energy E were shown to have no predictive power at all, neither by
themselves nor in combination with other factors; see Table 6.6.

As with the VA model, HRV was also shown to have a high predictive power for the
six basic emotions: 57%. When the additional factors were included in the analysis, the
explained variance dropped sharply. So, HRV was shown to be robust with respect to envi-
ronment, personality traits, and gender.

6.5.4 The valence-arousal (VA) model versus basic emotions

When both emotion representations are compared, the following ten main conclusions can
be drawn:

• Both emotion representations can handle the variation in participants, even without
including additional information such as the environment, personality traits, and gen-
der; see Tables 6.3- 6.6.

Table 6.6: Results of the repeated measures ANOVAs on the six basic emotions. The thresh-
old for significance was set to p ≤ .010. For the Intensity (I) and Energy (E) of speech no
results are reported as none of them exceeded the threshold.

E PN PE G Specification of effect
SD F0

• F(5,90) = 5.501, p < .001, η2 = .234
• • F(5,90) = 3.918, p = .003, η2 = .179

HRV
F(5,90) = 23.772, p < .001, η2 = .569

• F(5,90) = 10.966, p < .001, η2 = .379
• F(5,90) = 4.128, p = .002, η2 = .187

• • F(5,90) = 7.456, p < .001, η2 = .293
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• A high amount of variance can be explained using the VA model: 43%. This is much
higher than with the basic emotions: 21% (cf. Tables 6.3 and 6.5).

• Many more effects were found with the VA model compared to the basic emotions as
representation for emotions (cf. Tables 6.3 and 6.5 and Tables 6.4 and 6.6).

• The SD F0 was shown to have a good predictive power with both emotion representa-
tions; see Tables 6.4 and 6.6.

• The intensity (I) did not contribute to the predictive power of either of the two emotion
representations; see Tables 6.4 and 6.6.

• The energy of speech (E) did not contribute to the predictive power of either of the two
emotion representations; see Tables 6.4 and 6.6.

• The ECG feature HRV by itself was shown to be able to explain a high amount of
variance for both the VA model (62%) and the six basic emotions (57%). For the VA
model, this result can be mainly attributed to the valence dimension for which 58% of
the variance was explained; see Tables 6.4 and 6.6.

• The personality traits neuroticism and extroversion had no significant influence on the
participants’ experience of emotions; see Tables 6.3- 6.6.

• Gender was shown to interact with both models, often in combination with other fac-
tors. So, gender plays its role; however, what this is cannot be unveiled with the cur-
rent data.

• Both the VA model and the basic emotions, as treated in this chapter, share many char-
acteristics. This is mainly because a discrete representation of the VA model was used
that can distinguish six compounds, similar to the six basic emotions.

This study replicated the study presented in Chapter 5 in its comparison of these two
representations. The data of the current study confirmed the findings of the previous chap-
ter that the VA model is most appropriate, as the explained variance is much higher than
with the basic emotions: 43% versus 21%. The current results suggest that there is possibly
no such thing as a basic emotion (cf. [202]). At best, as with the study in Chapter 5, the dis-
crepancy in explained variance of the present analyses (cf. Tables 6.3-6.6) can be attributed
to the variance of the stimuli within one category of one basic emotion. More than anything
else this again illustrates the complexity of people and their emotional states. Moreover, this
also explains the variation in results reported in the literature, in particular in research that
goes from lab to life [674, 680].
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6.6 Static versus dynamic stimuli

More than anything else, the current study and its replicate presented in Chapter 5, pro-
vide the opportunity to determine the possible influence of the type of stimuli. The current
study used dynamic stimuli (i.e., movie scenes) [570], as were already used in the first stud-
ies reported in this monograph. In contrast, the study presented in the previous chapter
used static IAPS pictures [374, 452]. On the one hand, the movie scenes are claimed to be
more ecologically valid [235, 237]. The IAPS images can be questioned with respect to their
ecological validity as they present, for example, exaggerated images that are also possibly
culturally biased. On the other hand, the IAPS pictures have been validated and have been
used frequently and, consequently, have become a sort of standard for emotion elicitation.
This having been said, the question remains what (type of) stimuli to use.

When the results of both studies are compared, the first thing that one notices is the
difference in the number of effects found. For the VA model and the basic emotions, the
results of the study presented in Chapter 5 reported respectively > 2× and 1.5× the number
of results as were reported in the current chapter. For the univariate analysis, a similar trend
was shown for the VA model. In contrast, no significant difference in the number of effects
was found for the six basic emotions. More interesting than the number of effects is the
amount of variance the effects explained. For the VA model, the difference in explained
variance between both types of stimuli is enormous: 90% (IAPS pictures) versus 43% (movie
scenes). In contrast, for the basic emotions, the difference in explained variance between
both types of stimuli was marginal: 18% (IAPS pictures) versus versus 21% (movie scenes).
It is noteworthy that these differences are opposite.

The univariate ANOVAs of both studies show a similar trend over both emotion rep-
resentations. With the VA model many more results were found than with the six emotion
categories. This effect seems to have been rather independent of the type of stimuli used.
However, more important, the univariate analyses of both studies showed remarkable dif-
ferences. With the IAPS pictures used as emotion elicitation (see Chapter 5), the speech
feature intensity (I) has shown to have a remarkably high discriminative power for the VA
model. This result was not confirmed at all in the current study, which employed the movie
scenes. Given the fact that everything except the stimuli has been controlled over both stud-
ies, this is an astonishing effect. Although it should be noted that neither of the studies
revealed any effect of intensity (I) of speech on the six basic emotions.

The study presented here and the one presented in the previous chapter explored more
than biomodal emotion elicitation using two distinct types of stimuli. The studies also in-
cluded various other factors of which it has been posed that they are of influence on people’s
emotion experience: environment (or context), the personality traits neuroticism and extro-
version, and demographic information, most noteworthy gender. In line with what would
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be expected, these factors were shown to interact significantly. This stresses the need for
a holistic approach towards ASP, towards a digital human profile, which will be denoted
more extensively in the next part of this monograph.

Both studies confirmed that, independent of emotion representation, the bimodal ASP
approach taken is robust in penetrating emotions. In particular, this is confirmed by the
MANOVAs of both studies, see Tables 5.3 and 5.5 as well as Tables 6.3 and 6.5. The ANOVAs
reveal a more subtle picture in which the several factors do appear to play their role. An
exception is the personality trait extroversion, which seems to be of hardly any influence.
Independent of the emotion representation, the personality trait neuroticism had a signifi-
cant influence on the emotions experienced by the participants when viewing IAPS pictures.
Surprisingly, such an effect was not found with emotion elicitation using movie scenes. So,
this suggests that the personality trait neuroticism is (also) dependent on the stimuli type
and not or not only on the emotions meant to be elicited. Demographic information was
shown to be of little value when conducting ASP, except for the gender of the participants.
Over both studies and both emotion representations, gender was frequently shown to be of
influence.

Perhaps the most important conclusion of this one-on-one comparison of the two stud-
ies is that, independent of the emotion representation and the type of stimuli used, the
speech feature SD F0 and the ECG feature HRV have shown a significant power in pene-
trating the participants’ emotions. Follow-up research should be conducted to see whether
or not this effect can be generalized to other types of stimuli and even to other modalities.
For the time being, however, the inclusion of both SD F0 and HRV is advised for research and
applications that envision emotion-awareness. Additional research should be conducted on
the true value of the speech feature intensity (I) and its relation to both emotion representa-
tions as used in the two studies discussed here.

6.7 Conclusion

Both the F0 of speech and the HRV can be considered as physiological parameters that can
be determined indirectly or at least unobtrusively. This makes them par excellence suitable
for AmI purposes. This study and the study reported in the previous chapter were two of
the first studies that reported the use of both signals simultaneously to unravel the user’s
emotional state. To my knowledge, Kim and colleagues [336, 337, 339, 340] are the only
ones who have reported on this combination before. The results of this study show that
the combination of these measures provides a reliable, robust, and unobtrusive method to
penetrate the user’s emotional state. Moreover, the signals validate each other. Both HRV
and SD F0 seem to indicate influences of experienced valence and arousal in parallel. This
also confirmed the findings reported in the previous chapter.

111



6 Static versus dynamic stimuli

How emotion should be described and modeled remains a topic of debate, despite the
work presented in the current and previous chapters. In this chapter, we have adopted the
definition of Kleinginna and Kleinginna [350]. However, even in the same decade, various
seminal works on emotion were published; for example, Frijda (1986) [208] and Orotony,
Clore, and Collins (1988) [502]. Both of these works included their own definition of emo-
tion; for example, Orotony, Clore, and Collins [502, Chapter 1, p. 13 and Chapter 5, p.
191] defined emotions as: valenced reactions to events, agents, or objects, with their particular
nature being determined by the way in which the eliciting situation is construed. Since the 80s
of the previous century, a vast number of books, opinions, and research papers have been
published, illustrating the lack of a generally accepted, multidisciplinary theory on emo-
tions. For a concise, more recent overview of the various theories on emotions, we refer
to [144, 396, 535, 582].

This chapter closes Part III of this monograph, in which I explored methods and tech-
niques as well as several additional factors to unravel their influence on unveiling emotions.
In the next part of the monograph, Part IV, I will present three chapters that explore the fea-
sibility of affective computing. In the next chapter, Chapter 7, I will go through the complete
signal processing + pattern recognition pipeline, using the data that was also presented in
Chapters 3 and 4 and, as such, address the feasibility of emotion-aware systems in a com-
pletely different way and will reveal many of its future challenges. Lab research is brought
to clinical practice in the two chapters that follow Chapter 7. In Chapter 8 two studies will
be presented that explore the feasibility of Computer-Aided Diagnosis (CAD) for mental
health care. In these studies, I will employ only the speech signal since direct biosignals
were considered to be too obtrusive for the application at hand. After that, in Chapter 9,
the complete signal processing + pattern recognition pipeline will be applied on the data
derived from the studies discussed in Chapter 8. The resulting analyses can serve as the
ASP foundation for Computer-Aided Diagnosis (CAD) in mental health care settings.
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Abstract

As we have known for centuries, humans exhibit an electrical profile. This profile is altered
by various psychological and physiological processes, which can be measured through biosig-
nals (e.g., electromyography, EMG and electrodermal activity, EDA). These biosignals can re-
veal our emotions and, as such, can serve as an advanced man-machine interface (MMI) for
emotion-aware consumer products. However, such an MMI requires the correct classification
of biosignals to emotion classes. This chapter starts with a brief introduction on biosignals
for emotion detection. Next, I summarize the research as discussed in Chapters 3 and 4. On
this data, several variation of the signal processing + pattern recognition pipeline for ASP has
been tested, which resulted in a generic framework for automated emotion classification with
up to 61.31% correct classification of the 4 emotion classes, without the need of personal pro-
files. Among various other directives for future research, the results emphasize the need for
parallel processing of multiple biosignals.

This chapter is a compressed version of:

Broek, E.L. van den, Lisý, V., Janssen, J.H., Westerink, J.D.H.M., Schut, M.H., and Tuinen-

breijer, K. (2010). Affective Man-Machine Interface: Unveiling human emotions through

biosignals. In A. Fred, J. Filipe & H. Gamboa (Eds.), BioMedical Engineering Systems and

Technologies (series: Communications in Computer and Information Science, Vol. 52), p. 21–47.

Berlin/Heidelberg, Germany: Springer-Verlag. [invited]



7.1 Introduction

That men are machines (whatever else they may be) has long been suspected; but not till our genera-
tion have men fairly felt in concrete just what wonderful psycho-neuro-physical mechanisms they are.

William James (1893; 1842 − 1910)

7.1 Introduction

Despite the early work of William James and others before him, it took more than a cen-
tury before emotions were widely acknowledged and embraced by science and engineer-
ing. However, currently it is generally accepted that emotions cannot be ignored; they
influence us, be it consciously or unconsciously, in a wide variety of ways [521]. We are
(indeed) psycho-neuro-physical mechanisms [312, 440], who both send and perceive biosignals
that can be captured; for example, by electromyography (EMG), electrocardiography (ECG),
and electrodermal activity (EDA). See Table 1.1 for an overview. These biosignals can reveal
a plethora of characteristics of people; for example, workload, attention, and emotions.

Several studies have been conducted in the field of ASP, using a broad range of signals,
features, and classifiers; see Table 2.4 for an overview. Nonetheless, both the recognition
performance and the number of emotions that the classifiers were able to discriminate were
disappointing. Moreover, comparing the different studies is problematic because of:

1. The different settings the studies were applied in, ranging from controlled lab studies
to real-world testing;

2. The type of emotion triggers used;

3. The number of target states to be discriminated; and

4. The signals and features employed.

All in all, the conclusion has to be that there is a lack of general standards, which results
in low prediction accuracy and inconsistent results. However, for ASP to come to fruition,
it is important to deal with these issues. This illustrates the need for a well documented
general framework. In this chapter, I set out to initiate its development, to explore various
possibilities, and to apply it on a data set that will be introduced in the next section.

In the pursuit of emotion-aware technology, I will describe our work on the automatic
classification of biosignals. Hereby, we will following the complete signal processing + pat-
tern recognition pipeline, as was described in Chapter 1. For an introduction of the statistical
techniques that will be employed throughout this chapter, I refer to Appendix A. The data
on which the complete signal processing + pattern recognition pipeline will be executed is
the data as has been discussed in Chapters 3 and 4. I will refrain from repeating the com-
plete description of this data set here and will only summary it. For the complete description

117



7 Automatic classification of affective signals

concerning the data set used here, I kindly refer to Chapters 3 and 4.

The remaining chapter is organized as follows: First, in Section 7.3, I will briefly in-
troduce the preprocessing techniques employed. Next, in Section 7.4, the specifications of
the pattern recognition techniques will be discussed as well as the classification results they
delivered. In Section 7.5, I reflect on my work and critically review it. Finally, in Section 7.6,
I will end by drawing the main conclusions.

7.2 Data set

The research in which the data was gathered is already thoroughly documented in Chap-
ters 3 and 4. Therefore, we will only provide a brief summary of it.

The data set concerns the data of 24 subjects who watched movie scenes while affective
signals were recorded. In parallel, 4 affective signals were recorded: the EDA and three
facial EMG. See Figure 7.2 for samples of the three EMG signals and the EDA signal. These
are known to reflect emotions [360]; see also both Table 1.1 and Table 2.4. Regrettably, the
affective signal recordings of 3 subjects either failed or were distorted. Hence, the signals of
21 subjects remained for classification purposes.

To elicit emotions with the participants, I selected 8 movie scenes (120 sec. each) for
their emotional content. For specifications of these movie scenes, see Chapters 3 and 4. The
8 movie scenes were categorized as being neutral or triggering positive, negative, or mixed
(i.e., simultaneous negative and positive; [92]) emotions; hence, 2 movie scenes per emotion
category. This categorization was founded on Russell’s valence-arousal model [372, 566,
647].

A TMS International Porti 5 − 16/ASD system was used for the biosignal recordings
and was connected to a PC with TMS Portilab software. Three facial EMGs were recorded:
the right corrugator supercilii, the left zygomaticus major, and the left frontalis muscle. The
EMG signals were high-pass filtered at 20 Hz, rectified by taking the absolute difference
of the two electrodes, and average filtered with a time constant of 0.2 sec. The EDA was
recorded using two active skin conductivity electrodes and average filtering with a time
constant of about 2 sec. See Figure 7.2 for samples of the three EMG signals and the EDA
signal.

7.2.1 Procedure

After the participant was seated, the electrodes were attached and the recording equipment
was checked. The 8 movie scenes were presented to the participant in pseudo-random order.
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Figure 7.1: The complete processing scheme, as applied in the current research.
Legenda: EMG: electromyography EDA: electrodermal activity; ANOVA of variance;
LOOCV: leave-one-out cross validation

A plain blue screen was shown between the scenes for 120 seconds. This assured that the
biosignals returned to their baseline level, before the next film fragment was presented.

After the viewing session, the electrodes were removed. Next, the participant an-
swered a few questions regarding the movie scenes watched. To aid their memory, rep-
resentative print-outs of each fragment were provided.

7.3 Preprocessing

The quest for self-calibrating algorithms for consumer products and for AmI and AI pur-
poses gave some constraints to processing the signals. For example, no advanced filters
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Figure 7.2: Samples of the electromyography (EMG) in µV of the frontalis, the corrugator
supercilii, and the zygomaticus major as well as of the electrodermal activity (EDA) in µV ,
denoted by the skin conductance level (SCL). All these signals were recorded in parallel,
with the same person.

should be needed, the algorithms should be noise-resistant, and should (preferably) also
be able to handle corrupt data. Therefore, we chose to refrain from advanced preprocess-
ing schemes and applied basic preprocessing. Figure 7.1 presents the complete processing
scheme as applied in the current research.

7.3.1 Normalization

Humans are known for their rich variety in all aspects, this is no different for their biosignals.
In developing generic classifiers, this required the normalization of the signals. This was
expected to boost the performance significantly [541].

For each person, for all his signals, and for all their features separately, the following
normalization was applied:

xn =
xi − x̄

σ
,
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where xn is the normalized value, xi the recorded value, x̄ the global mean, and σ the stan-
dard deviation.

Normalization of data (e.g., signals) was already discussed in Chapters 3 and 4. This
has resulted in a variety of normalization functions [48, 62, 457], see also Table 10.4 in the
next chapter.

7.3.2 Baseline matrix

In their seminal article, Picard, Vyzas, and Healey (2001) [524] introduced a baseline matrix
for processing biosignals for emotion recognition. They suggested that this could tackle
problems due to variation both within (e.g., inter day differences) and between participants.
Regrettably, Picard et al. (2001) [524] did not provide evidence for its working.

The baseline matrix requires biosignal recordings while people are in a neutral state.
Regrettably, such recordings were not available. Alternatively, one of both available neutral
movie scenes was chosen; see Chapters 3 and 4.

In line with Picard et al. (2001) [524], the input data was augmented with the baseline
values of the same data set. A maximum performance improvement of 1.5% was achieved,
using a k-NN classifier. Therefore, the baseline matrix was excluded in the final processing
pipeline.

7.3.3 Feature selection

To achieve good classification results with pattern recognition and machine learning, the set
of input features is crucial. This is no difference with classifying emotions [191, 443, 680]; see
also Section 1.5 and Chapter 2. As was denoted in Chapter 2, biosignals can be processed in
the time, frequency, time-frequency, and power domains.

For EMG and EDA signals, the time domain is most often employed for feature extrac-
tion; see also Table 1.1. Consequently, we have chosen to explore a range of features from the
time domain: mean, absolute deviation, standard deviation (SD), variance, skewness, and
kurtosis. Among these are frequently used features (i.e., mean and SD) and rarely used, but
promising, features (i.e., skewness and kurtosis) (see Chapters 3 and 4); see also Table 7.1.

To define an optimal set of features, a criterion function should be defined. However,
no such criterion function was available in our case. Thus, an exhaustive search in all pos-
sible subsets of input features (i.e., 224) was required to guarantee an optimal set [130]. To
limit this enormous search space, an ANOVA-based heuristic search was applied.

For both of the normalizations, we performed feature selection based on ANOVAs. We
selected the features with ANOVA α ≤ 0.001 (see also Appendix A), as this led to the best
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7 Automatic classification of affective signals

Table 7.1: The best feature subsets from the time domain, for k-nearest neighbor (k-NN)
classifier with Euclidean metric. They were determined by analysis of variance (ANOVA),
using normalization per signal per participant. EDA denotes the electrodermal activity or
skin conductance level.
feature EDA facial electromyography (EMG)

frontalis corrugator supercilii zygomaticus

mean o
absolute deviation o
standard deviation (SD) o o
variance o o
skewness o o o
kurtosis o

precision. The features selected for each of the biosignals are presented in Table 7.1.

The last step of preprocessing was PCA; see also Appendix A. The improvement after
the PCA was small compared to feature selection solely. However, it was positive for nor-
malization; see also Table 7.2. Figure A.1 presents for each set of two emotion classes, of the
total of four, a plot denoting the first three principal components. As such, the six resulting
plots illustrate the complexity of separating the emotion classes.

7.4 Classification results

This section reports the results of the three classification techniques applied: k-Nearest
Neighbors (k-NN), Support Vector Machines (SVM), and Multi-Layer Perceptron (MLP)
neural network; see also Appendix A. In all cases, the features extracted from the biosignals
were used to classify participants’ neutral, positive, negative, or mixed state of emotion; see
also Figure A.1. The labels for the emotion classes were provided by the participants, as
described in Chapter 3. For the complete processing scheme, we refer to Figure 7.1.

Table 7.2: The recognition precision of the k-nearest neighbors (k-NN) classifier, with k =
8 and the Euclidean metric. The influence of three factors is shown: 1) normalization, 2)
analysis of variance (ANOVA) feature selection (FS), and 3) Principal Component Analysis
(PCA) transform.

normalization no fs ANOVA fs ANOVA fs & PCA
(10 features) (5 components)

no 45.54%
yes 54.07% 60.71% 60.80%
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7.4.1 k-Nearest Neighbors (k-NN)

For our experiments, we used MATLAB∗ and a k-NN implementation, based on SOM Tool-
box 2.0†. Besides the classification algorithm described in Appendix A, we used a modified
version, more suitable for calculating the recognition rates. Its output was not the result-
ing class, but a probability of classification to each of the classes. This means that if there
is a single winning class, the output is 100% for the winning class and 0% for all the other
classes. If there is a tie between multiple classes, the output is divided between them and
0% is provided to the rest. All the recognition rates of the k-NN classifier reported in the
current study were obtained by using this modified algorithm.

A correct metric is a crucial part of a k-NN classifier. A variety of metrics provided
by the pdist function in MATLAB was applied. Different feature subsets appeared to be
optimal for different classes. Rani et al. (2006) [541] denoted the same issue in their empirical
review (cf. Table 7.1). The results of the best preprocessed input with respect to the four
emotion classes (i.e., neutral, positive, negative, and mixed) is 61.31%, with a city block
metric and k = 8 (cf. Table 7.2).

Probability tables for the different classifications given a known emotion category are
quite easy to obtain. They can be derived from confusion matrices of the classifiers by trans-
forming the frequencies to probabilities [355]. Table 7.3 presents the confusion matrix of the
k-NN classifier used in this research, with a cityblock metric and k = 8.

7.4.2 Support vector machines (SVM)

We have used the MATLAB environment and an SVM and kernel methods (KM) toolbox‡,
for experimenting with SVMs. We used input enhanced with the best preprocessing, de-
scribed in the previous section. It was optimized for the k-NN classifier; however, we ex-
pected it to be a good input for more complex classifiers as well including SVM. This as-
sumption was supported by several tests with various normalizations. Hence, the signals
were normalized per person, see also Section 7.3. After feature selection, the first 5 principal
components from the PCA transformation were selected, see also Appendix A.

The kernel function of SVM characterizes the shapes of possible subsets of inputs clas-
sified into one category [586]. Being SVM’s similarity measure, the kernel function is the
most important part of an SVM; again, see also Appendix A. We applied both a polynomial
kernel, with dimensionality d, defined as:

kP (xi, x
l) =

(

xi · xl
)d

∗MATLAB online: http://www.mathworks.com/products/matlab/
†The MATLAB SOM Toolbox 2.0: http://www.cis.hut.fi/projects/somtoolbox
‡The SVM and KM Toolbox: http://asi.insa-rouen.fr/enseignants/~arakotom/toolbox/
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7 Automatic classification of affective signals

Table 7.3: Confusion matrix of the k-NN classifier of EDA and EMG signals for the best
reported input preprocessing, with a cityblock metric and k = 8.

real
neutral positive mixed negative

classified

neutral 71.43% 19.05% 9.52% 14.29%
positive 9.52% 57.14% 9.52% 21.43%
mixed 4.76% 4.76% 64.29% 11.90%
negative 14.29% 19.05% 16.67% 52.38%

and a Gaussian (or radial basis function) kernel, defined as:

kG(xi, x
l) = exp

(

−|xi − xl|2
2σ2

)

,

where xi is a feature vector that has to be classified and xl is a feature vector assigned to a
class (i.e., the training sample) [586].

A Gaussian kernel (σ = 0.7) performed best with 60.71% correct classification. How-
ever, a polynomial kernel with d = 1 had a similar classification performance (58.93%). All of
the results were slightly worse than with the k-NN classifier. Its confusion matrix is similar
to that of the k-NN classifier and, hence, is omitted.

7.4.3 Multi-Layer Perceptron (MLP) neural network

We have used a Multi-Layer Perceptron (MLP) trained by a back-propagation algorithm
that was implemented in the neural network toolbox of MATLAB; see also Appendix A. It
used gradient descent with moment and adaptive training parameters. We have tried to
recognize only the inputs that performed best with the k-NN classifier.

In order to assess which topology of ANN was most suitable for the task, we conducted
small experiments with both 1 and 2 hidden layers. In both cases, we did try 5 to 16 neurons
within each hidden layer. All of the possible 12 + 12× 12 topologies were trained, each with
150 cycles and tested using LOOCV.

The experiments using various network topologies supported the claim that bigger
ANN do not always tend to over fit the data [33, 36, 256]. The extra neurons were simply
not used in the training process. Consequently, the bigger networks showed good general-
ization capabilities but did not outperform the smaller ones. An MLP with 1 hidden layer
of 12 neurons was shown to be the optimal topology.

An alternative method for stopping the adaptation of the ANN is to use validation
data. For this reason, the data set was split into 3 parts: 1 subject for testing, 3 subjects for
validation, and 17 subjects for training. The testing subject was completely removed from
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the training process at the beginning. The network was trained using 17 randomly chosen
training subjects. At the end of each training iteration, the network was tested on the 3

validation subjects. This procedure led to a 56.19% correct classification of the four emotion
classes. Its confusion matrix is similar to that of the k-NN classifier and, hence, is omitted.

7.4.4 Reflection on the results

Throughout the last decade, various studies have been presented with similar aims. Some of
these studies reported good results on the automatic classification of biosignals that should
unveil people’s emotions; see Table 2.4. For example, Picard et al. (2001) [524] report 81%

correct classification on the emotions of one subject [524]. Haag et al. (2004) [246] report
64% − 97% correct classification, using a band function with bandwidth 10% and 20%. This
study was conducted on one subject. This study report promising results but also lack the
necessary details needed for its replication [246]. More recently, Kim and André (2008) re-
port a recognition accuracy of 95% and 70% for subject-dependent and subject-independent
classification. Their study included three subjects [338]. For an exhaustive overview of re-
lated studies, see Table 2.4 in Chapter 2.

In comparison with [246, 338, 524], this research incorporated data of a large num-
ber of people (i.e., 21), with the aim to develop a generic processing framework. At first
glance, with average recognition rates of 60.71% for SVM and 61.31% for k-NN and only
56.19% for ANN, its success is questionable. However, the classification rates differ between
the four emotion categories, as is shown in Table 7.3, which presents the confusion matrix
of the results of the k-NN classifier. Neutral emotional states are recognized best, with a
classification rate of 71.43%. Negative emotional states are the most complex to distinguish
from the other three emotion categories, as is marked by the 52.38% correct classification
rate. The complexity of separating the four emotion classes from each other is illustrated in
Figure A.1.

Taking into consideration the generic processing pipeline (see also Figure 7.1) and the
limitations of other comparable research (cf. Table 2.4), the results reported in this chapter
should be judged as (at least) reasonably good. Moreover, a broad range of improvements
are possible. One of them would be to question the need of identifying specific emotions,
using biosignals for MMI. Hence, the use of alternative, rather rough categorizations, as
used in the current research, should be further explored.

With pattern recognition and machine learning, preprocessing of the data is crucial.
This phase could also be improved for the biosignals used in the current study. First of all,
we think that the feature selection based on an ANOVA was not sufficient for more complex
classifiers such as neural networks. The ANOVA tests gathered the centers of random dis-
tributions that would generate the data of different categories; hereby assuming that their
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variances were the same. However, a negative result for this test is not enough to decide that
a feature did not contain any information. As an alternative for feature selection, the k-NN
classifier could be extended by a metric that would weigh the features, instead of omitting
the confusing or less informative features.

Taking it all together, the quest towards affective computing continues. Although the
results presented are good compared to related work, it is hard to estimate whether or not
the classification performance is sufficient for embedding of affective computing in real-
world applications. However, the future is promising with the rapidly increasing number of
resources allocated for affective computing and the range of improvements that are possible.
This assures that the performance on classification of emotions will achieve the necessary
further improvements.

7.5 Discussion

This chapter has positioned men as machines in the sense that they are psycho-neuro-physical
mechanisms [312]. It has to be said that this is a far from new position; it has already been
known for centuries, although it was rarely exploited in application oriented research. How-
ever, in the last decade interest has increased and subareas evolved that utilized this know-
ledge. This chapter concerns one of them: affective computing.

To enable the recognition of these emotions, they had to be classified. Therefore, a
brief description of the classification techniques used is provided in Appendix A. Next,
a study is introduced in which three EMG signals and people’s EDA were measured (see
also Figure 7.2), while being exposed to emotion inducing movie scenes; see Section 7.2.
See Figure 7.1 for an overview of the processing scheme applied in the current research.
Subsequently, preprocessing and the automatic classification of biosignals, using the four
emotion categories, were presented in Section 7.3 and Section 7.4.

Also in this research, the differences between participants became apparent. People
have different physiological reactions to the same emotions and people experience different
emotions with the same stimuli (e.g., music or films). Moreover, these four levels inter-
act [191, 440, 443]. Although our aim was to develop a generic model, one could question
whether or not this can be realized. Various attempts have been made to determine people’s
personal biosignal-profile [338, 440, 524, 541]. However, no generally accepted standard has
been developed so far.

In the pursuit of generic affective computing processing schemes, the notion of time
should be taken into consideration, as I will further elaborate on in Chapter 10. This can
help to distinguish between emotions, moods, and personality [31, 565, 676]:

1. Emotion: A short reaction (i.e., a matter of seconds) to the perception of a specific
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(external or internal) event, accompanied by mental, behavioral, and physiological
changes [191, 680].

2. Mood: A long lasting state, gradually changing, in terms of minutes, hours, or even
longer. Moods are experienced without concurrent awareness of their origin and are
not object related. Moods do not directly affect actions; however, they do influence our
behavior indirectly [191, 222, 680].

3. Personality: People’s distinctive traits and behavioral and emotional characteristics.
For example, introvert and extrovert people express their emotions in distinct ways.
Additionally, self-reports and physiological indicators / biosignals will also be influ-
enced by people’s personality trait [123, 670].

With respect to processing the biosignals, the current research could be extended by a
more detailed exploration of the time windows; for example, with a span of 10 seconds [191,
443, 679, 680]. Then, data from different time frames could be combined and different, better
suitable normalizations could be applied to create new features. For example, information
concerning the behavior of the physiological signals could be more informative than only the
integral features from a large time window. Studying short time frames could also provide
a better understanding of the relation between emotions and their physiological correlates
/ biosignals, see also Table 1.1.

Other more practical considerations should also be noted. The advances made in wear-
able computing and sensors facilitates (affective) MMI [220]. In recent years, various proto-
types have been developed, which enable the recording of physiological signals [425]. This
enables the recordings of various biosignals in parallel. In this way, an even higher proba-
bility of correct interpretation can be achieved [191, 443, 676].

Affective MMI can extend consumer products [679]. For example, an music player
could sense its listener’s emotions and either provide suggestions for other music or auto-
matically adapt its playing list to these emotions. In addition, various other applications
have been proposed, mockups have been presented, and implementations have been made.
Three examples of these are clothes with wearable computing, games that tweak their be-
havior and presentation depending on your emotions, and lighting that reacts on or adapts
to your mood.

ASP could possibly bring salvation to AI [454, 455, 521, 676]. If we understand and
sense emotions, true AI is possibly (and finally) within reach. Current progress in biomedi-
cal and electrical engineering provide the means to conduct affective computing in an unob-
trusive manner and, consequently, gain knowledge about our natural behavior, a prerequi-
site for modeling it. As AI’s natural successor, for AmI [676], even more than for AI, emotion
will play a crucial role in making it a success. Since AmI was coined by Emile Aarts [1], this
has been widely acknowledged and repeatedly stressed [1, 676]. Also the developments in
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brain-computer interfacing (BCI) [47, 420, 637] are of interest for affective computing. In
time, affective computing BCI will possibly become within science’s reach. Affective BCI,
but also BCI in general, could advance AI, AmI, and human-robot interaction. Slowly this
is being acknowledged, as is illustrated by a workshop on affective BCI, as was held at the
2009 and 2011 International Conference on Affective Computing and Intelligent Interaction§.
With affective BCI, again both its scientific foundation and its applications will be of interest.

Without any doubt affective computing has a broad range of applications and can
help in making various areas more successful. Taking it all together, the results gathered in
this research are promising. However, the correct classification rate is below that which is
needed for reliable affective computing in practice. Providing the range of factors that can
be improved, one should expect that the performance can be boosted substantially. That
this has not already been achieved is not a good sign; perhaps, some essential mistakes are
still being made. One of the mistakes could be the computationally driven approach. A
processing scheme that is founded on or at least inspired by knowledge from both biology,
in particular physiology, and psychology could possibly be more fruitful . . .

7.6 Conclusions

Affective MMI through biosignals is perhaps the ultimate blend of biomedical engineering,
psychophysiology, and AI [22, 714, 716]. However, in its pursuit, various other disciplines
(e.g., electrical engineering and psychology) should not be disregarded. In parallel, affective
computing promotes the quest towards its scientific foundation and screams for its applica-
tion [191, 443, 680]. As such, it is next generation science and engineering, which could truly
bridge the gap between man and machine.

As can be derived from this chapter, various hurdles still have to be taken in the devel-
opment of a generic, self-calibrating, biosignal-driven classification framework for affective
computing. The research and the directives denoted here could help in taking some of these
hurdles. This can be an important step towards a new, biosignal-driven, era of advanced,
affective computing. To assess the true value of the signal processing + pattern recogni-
tion pipeline presented in this chapter, in the next two chapter research is brought from lab
to clinical practice. The feasibility of Computer-Aided Diagnosis (CAD) for mental health
care is explored. Chapter 8 presents two studies that employ only the speech signal; direct
biosignals were considered to be too obtrusive for the application at hand. In Chapter 9 the
complete signal processing + pattern recognition pipeline will be applied on the data de-
rived from the studies discussed in Chapter 8. The resulting analyses can serve as the ASP
foundation for Computer-Aided Diagnosis (CAD) in mental health care settings.

§The IEEE 2009 and 2011 International Conference on Affective Computing and Intelligent Interaction:
http://www.acii2009.nl/ and http://www.acii2011.org/
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8
Two clinical case studies on bimodal

health-related stress assessment



Abstract

This chapter is the first of a set of two chapters that aim towards bringing affective computing
to practice. As has been denoted in the Introduction, health informatics is on of ASP ’s applica-
tion domains. This chapter describes two studies that share the underlying idea that ASP can
initialize Computer-Aided Diagnosis (CAD) for mental health care. To explore the feasibility
of this idea, 25 patients suffering from a Post-Traumatic Stress Disorder (PTSD) participated
in both studies. To this date, the treatment of PTSD is a great challenge for therapists. CAD
is envisioned to enable objective and unobtrusive stress measurement, provide decision sup-
port on whether or not the level of stress is excessive, and, consequently, be able to aid in its
treatment. Speech was chosen as an objective, unobtrusive stress indicator, considering that
most therapy sessions are already recorded anyway. The two studies concerned a (controlled)
stress-provoking storytelling (SPS) and a(n ecologically valid) re-living (RL) study, each con-
sisting of a ‘happy’ and an ‘anxiety triggering’ session. The SUD was determined for subjec-
tive assessment, which enabled the validation of derived speech features. For both studies, a
Linear Regression Model (LRM) was developed, founded on patients’ average acoustic pro-
files. It used five speech features: amplitude, zero crossings, power, high-frequency power,
and pitch. From each feature, 13 parameters were derived; hence, in total 65 parameters were
calculated. Using the LRM, respectively 83% and 69% of the variance was explained for the
SPS and RL study. Moreover, a set of generic speech signal parameters was presented. To-
gether, the models created and parameters identified can serve as the foundation for future
CAD tools.

This chapter is an adapted version of:

Broek, E.L. van den, Sluis, F. van der, and Dijkstra, T. (2011). Telling the story and re-living

the past: How speech analysis can reveal emotions in post-traumatic stress disorder (PTSD)

patients. In J.H.D.M. Westerink, M. Krans, and M. Ouwerkerk (Eds.), Sensing Emotions: The

impact of context on experience measurements (Chapter 10), p. 153–180. Series: Philips Research

Book Series, Vol. 12. Dordrecht, The Netherlands: Springer Science+Business Media B.V.

[invited]



8.1 Introduction

No laga duele bieu: Let not woes of old
Skavisábo di nobo. enslave you anew.

– Nydia Ecury –

8.1 Introduction

In our modern society, many people experience stress, sometimes for just a brief moment, at
other times for prolonged periods of time. Stress can be defined as a feeling of pressure or
tension, caused by influences from the outside world [140, Chapter 6]. It can be accompanied
by positive and by negative feelings. It affects our physical state, for instance by increasing
our heart rate and blood pressure, and freeing stress hormones like (nor)adrenaline and
(nor)epinephrine [359], stimulating autonomic nerve action. Stress may become harmful if
it occurs for too long or too frequently, or if it occurs during a traumatic experience. It may,
for instance, result in depression, insomnia, or PTSD [178, 365, 547, 562]. To make things
even worse, such stress related disorders stigmatize the people suffering from them, which
in itself is an additional stressor [563, 564].

Depression cannot always be related to a specific cause, though several contributing
factors have been identified: for example, genetic vulnerability and unavoidability of stress
[232]. More specifically, certain stressful life events (e.g., job loss, widowhood) can lead
to a state of depression. Furthermore, chronic role-related stress is significantly associated
with chronically depressed mood [333]. Note that the experience of stress is associated with
the onset of depression, and not with the symptoms of depression. Insomnia often has a
fairly sudden onset caused by psychological, social, or medical stress [267]. Nevertheless, in
some cases, it may develop gradually and without a clear stressor. Insomnia is characterized
by sleep deprivation, and associated with increased physiological, cognitive, or emotional
arousal in combination with negative conditioning for sleep [9]. Traumas can originate from
a range of situations, such as warfare, natural disaster, and interpersonal violence such as
sexual, physical, and emotional abuse, intimate partner violence, or collective violence (e.g.,
a bank robbery) [547]. In such cases, a PTSD may arise, which can be characterized by a
series of symptoms and causes [178, 365, 547, 562], summarized in Table 8.1.

8.2 Post-Traumatic Stress Disorder (PTSD)

In our study, we studied the emotions in PTSD patients, who suffered from panic attacks,
agoraphobia, and panic disorder with agoraphobia [365, 572].

A panic attack is a discrete period in which there is a sudden onset of intense apprehen-
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Table 8.1: Introduction to (the DSM-IV TR [9] criteria for) Post-Traumatic Stress Disorder
(PTSD).

Trauma can cause long-term physiological and psychological problems. This has been rec-
ognized for centuries. Such suffering (e.g., accompanying a Post-Traumatic Stress Disorder,
PTSD), can be characterized in terms of a series of symptoms and causes. Traumas can orig-
inate from a range of situations, either short or long lasting; for example, warfare, natural
disasters such as earthquakes, interpersonal violence such as sexual, physical, and emo-
tional abuse, intimate partner violence, and collective violence.

Diagnostic criteria as defined by the DSM-IV TR [9] comprise six categories of symptoms,
each denoting their various indicators:

1. Exposure of the person to a traumatic event.
2. Persistent reexperience of the traumatic event.
3. Persistent avoidance of stimuli, associated with the trauma, and numbing of general

responsiveness (not present before the trauma).
4. Persistent symptoms of increased arousal, not present before the trauma.
5. Duration of the disturbance (symptoms in criteria 2, 3, and 4) is more than one month.
6. The disturbance causes clinically significant distress or impairment in social, occupa-

tional, or other important areas of functioning.
Many other symptoms have also been mentioned; for example, weakness, fatigue, loss of
willpower, and psychophysiological reactions such as gastrointestinal disturbances. How-
ever, these are not included in the DSM-IV TR diagnostic criteria.

Additional diagnostic categories are also suggested for victims of prolonged interpersonal
trauma, particularly early in life. These concern problems are related to: 1) regulation of
affect and impulses, 2) memory and attention, 3) self-perception, 4) interpersonal relations,
5) somatization, and 6) systems of meaning. Taken together, PTSD includes a broad variety
of symptoms and diagnostic criteria. Consequently, the diagnosis is hard to make, as is also
the case for various other mental disorders.

sion, fearfulness or terror, often associated with feelings of impending doom. During these
Panic Attacks, symptoms such as shortness of breath, palpitations, chest pain or discomfort,
choking or smothering sensations, and fear of ‘going crazy’ or losing control are present.
The panic attack has a sudden onset and builds rapidly to a peak (usually in 10 minutes or
less). Panic attacks can be unexpected (uncued), situationally bound (cued), or situationally
predisposed [572]. Agoraphobia is anxiety about, or avoidance of, places or situations from
which escape might be difficult (or embarrassing), or in which help may not be available
in the event of having a panic attack or panic-like symptoms [572]. Panic disorder with
agoraphobia is characterized by both recurrent and unexpected panic attacks, followed by
at least one month of persistent concern about having another panic attack, worries about
the possible implications or consequences of such attacks, or a significant behavioral change
related to these attacks. The frequency and severity of Panic attacks vary widely, but panic
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disorder as described here has been found in epidemiological studies throughout the world.
Panic disorders without and with agoraphobia are diagnosed two to three times as often
in women as in men. The age of onset of panic disorders varies considerably, but most
typically lies between late adolescence and the mid-thirties. Some individuals may have
episodic outbreaks with years of remission in between, and others may have continuous
severe symptomatology [572].

Due to its large inter-individual variability and its broad variety of symptoms, the
diagnosis of PTSD is hard to make [178, 365, 547, 562]. At the same time, it is clear that an ef-
ficient treatment of PTSD requires an objective and early diagnosis of the patients’ problems
and their therapeutic progress. Assessing the emotional distress of a patient is therefore of
the utmost importance. Therapists have developed a range of questionnaires and diagnostic
measurement tools for this purpose [353, 572]. Regrettably, these may be experienced as a
burden by clients, because it takes the time and willingness of the clients to complete them.

In addition, several other problems arise when a clinician tries to assess the degree
of stress in the patient. First, during the appraisal of a stress response, a stressor may not
always be seen as stressful enough to be a cause for the mental illness. In other words,
although the client may experience it as hugely stressful, the clinician might not always ac-
knowledge it as such. Second, when measuring the response to a stressor, the clinician may
rely on introspection and expertise, but these are always to some extent subjective and they
also rely on the communicative abilities, truthfulness, and compliance of the client in ques-
tion. Third, at times it may not be completely clear which (aspect of) the experienced stressor
led to the excessive stress response. Finally, the evaluation of the progress in treatment is
complicated by its gradualness and relativity.

Given these considerations, it is abundantly clear why researchers have searched for
more objective, unobtrusive ways to measure emotions in patient populations. In other
words, in addition to standardizing their professional approaches, therapists have sought
for new sorts of Computer-Aided Diagnosis (CAD) that are applicable to real-life situations
and measure real emotions.

In the following sections, we will first describe both the storytelling and trauma reliv-
ing techniques themselves. They provided us with stretches of speech, which we analyzed
with respect to a series of signal characteristics to detect emotions. After discussing our
speech analysis technique, we will explain how the Subjective Unit of Distress is standardly
measured. This will then be followed by a more detailed report of our experimental study.
We will end the chapter with an evaluation of our novel approach to stress and emotion
measurement.
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8 Two clinical case studies on bimodal health-related stress assessment

8.3 Storytelling and reliving the past

As described above, the PTSD patients in our study suffered from Panic Attacks. During
and directly after a Panic Attack, there is usually a continuous worrying by the client about
a new attack, which induces an acute and almost continuous form of stress. In our main
studies, we attempted to mimic such stress in two ways; see also Figure 8.1.

First, in the Stress-Provoking Story (SPS) study, the participants read a stress-
provoking or a positive story aloud [685]. Here, storytelling was used as the preferred
method to elicit true emotions in the patient. This method allows great methodological
control over the invoked emotions, in the sense that every patient reads exactly the same
story. The fictive stories were constructed in such a way that they would induce certain rel-
evant emotional associations. Thus, by reading the words and understanding the story line,
negative or positive associations could be triggered. The complexity and syntactic structure
of the different stories were controlled to exclude the effects of confounding factors. The
negative stories were constructed to invoke anxiety, as it is experienced by patients suffer-
ing from PTSD. Anxiety is, of course, one of the primary stressful emotions. The positive
stories were constructed to invoke a positive feeling of happiness.

Second, in the Re-Living (RL) study, the participants told freely about either their last
panic attack or their last joyful occasion [248]. The therapists assured us that real emotions
would be triggered in the reliving sessions with PTSD patients, in particular in reliving the
last panic attack. As the reliving blocks were expected to have a high impact on the patient’s
emotional state, a therapist was present for each patient and during all sessions. The two RL
sessions were chosen to resemble two phases in therapy: the start and the end of it. Reliving
a panic attack resembles the trauma in its full strength, as at the moment of intake of the
patient. Telling about the last happy event a patient experienced, resembles a patient who is
relaxed or (at least) in a ‘normal’ emotional condition. This should resemble the end of the
therapy sessions, when the PTSD has disappeared or is diminished.

8.4 Emotion detection by means of speech signal analysis

The emotional state that people are in (during telling a story or reliving the past) can be
detected by measuring various signals, as has been outlined in Chapter 2. However, more
than any other signal, speech suited our purposes as:

1. Speech recordings are completely unobtrusive, see Chapter 2.

2. The communication in therapy sessions is often recorded anyway. Hence, no addi-
tional technical effort had to be made on the part of the therapists.

3. Therapy sessions are generally held under controlled conditions in a room shielded
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stress-provoking stories (SPS) study


re-living (RL) study


happy

stress /


anxiety


happy

stress /


anxiety


baseline
 baseline
practice


session


Figure 8.1: Overview of both the design of the research and the relations (dotted lines) in-
vestigated. The two studies, SPS and RL, are indicated, each consisting of a happy and a
stress/anxiety-inducing session. In addition, baseline measurements were done, before and
after the two studies.

from noise. Hence, the degree of speech signal distortion can be expected to be limited.

There is a vast amount of literature on the relationship between speech and emotion, as
was already denoted in Chapter 2. Various speech features have been shown to be sensitive
to experienced emotions; see Chapter 2 for a concise review. In this research, we extracted
five characteristics of speech:

1. the power (or intensity or energy) of the speech signal; for example, see Table 2.2,
Chapters 5 and 6, and [131, 469];

2. its fundamental frequency (F0) or pitch, see also Table 2.2, Chapters 5 and 6, and [131,
369, 469, 579, 696];

3. the zero-crossings rate [331, 560];

4. its raw amplitude [469, 579]; and

5. the high-frequency power [27, 131, 469, 560].

All of these characteristics have been considered as useful for the measurement of experience
emotions. Moreover, we expect them to be complementary to a high extent.

8.5 The Subjective Unit of Distress (SUD)

To evaluate the quality of our speech analysis, we must compare it to an independent mea-
sure of distress. We compared the results of our speech features to those obtained from a
standard questionnaire, which measured the Subjective Unit of Distress (SUD). The SUD
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8 Two clinical case studies on bimodal health-related stress assessment

was introduced by Wolpe in 1958 and has since proven itself to be a reliable measure of a
person’s emotional state. The SUD is measured by means of a Likert scale that registers the
degree of distress a person experiences at a particular moment in time. In our case, we used
a linear scale with a range between 0 and 10 on which the experienced degree of distress
could be indicated by a dot or cross. The participants in our study were asked to fill in the
SUD test once every minute; therefore, it became routine during the experimental session
and has not been a stress provoking factor.

8.6 Design and procedure

In our study, 25 female Dutch PTSD patients (mean age: 36; SD: 11.32) participated of their
own free will. This group of patients was chosen because we expected that their emotions
could be elicited rather easy by way of the two studies, as PTSD patients are sensitive for
emotion elicitation methods chosen. Hence, in contrast with traditional emotion elicitation
as often conducted in research settings (cf. Chapters 3-6), true emotions were (almost) guar-
anteed with these studies.

All patients signed an informed consent and all were aware of the tasks included. The
experiment began with a practice session, during which the participants learned to speak
continuously for longer stretches of time, because during piloting it was noticed that partic-
ipants had difficulty in doing this. In addition, the practice session offered them the oppor-
tunity to become more comfortable with the experimental setting. Next, the main research
started, which consisted of two studies and two baseline sessions. The experiment began
and ended with the establishment of the baselines, in which speech and SUD were recorded.
Between the two baseline blocks, the two studies, the Stress-Provoking Stories (SPS) study
and the Re-Living (RL) study, were presented. The two studies were counterbalanced across
participants.

The SPS study aimed at triggering two different affective states in the patient. It in-
volved the telling of two stories, which were meant to induce either stress or a neutral feel-
ing. From each of the sessions, three minutes in the middle of the session were used for
analysis. The order of the two story sessions was counterbalanced over participants. Both
speech and SUD scores (once per minute) were collected. The RL study also involved two
sessions of three minutes. In one of these, the patients were asked to re-experience their last
panic attack. In the other, the patients were asked to tell about the last happy event they
could recall. Again, the order of sessions was counterbalanced over participants. With both
studies, problems occurred with one patient. In both cases, the data of this patient were
omitted from further analysis. Hence, in both conditions, the data of 24 patients were used
for further analysis.
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Speech signal


Power


Amplitude


F0


HF Power
Fourier analysis


Zero crossings


Autocorrelation function


Figure 8.2: Speech signal processing scheme, as applied in this research.
Abbreviations: F0: fundamental frequency, HF: high frequency.

8.7 Features extracted from the speech signal

Recording speech was done using a personal computer, a microphone preamplifier, and a
microphone. The sample rate of the recordings was 44.1 kHz, mono channel, with a reso-
lution of 16 bits. All recordings were divided into samples of approximately one minute of
speech.

Five features were derived from the samples of recorded speech: raw amplitude,
power, zero-crossings, high-frequency power, and fundamental frequency; see also Fig-
ure 8.2. Here, we will give a definition of these five features.

The term power is often used interchangeably with energy and intensity. In this chap-
ter, we will follow [432] in using the term power. For a domain [0, T ], the power of the
speech signal is defined:

20 log10

1

P0

√

1

T

∫ T

0

x2(t) dt, (8.1)

where the amplitude or sound pressure of the signal is denoted in Pa (Pascal) as x(t) (see
also Figure 8.3a) and the auditory threshold P0 is 2 · 10−5 Pa [54].

The power of the speech signal is also described as the Sound Pressure Level (SPL),
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Figure 8.3: A sample of the speech signal features of a PTSD patient from the re-living (RL)
study. The dotted lines denote the mean and +/- 1 standard deviation. The patient’s SUD
scores for this sample were: 9 (left) and 5 (right). Power (dB) (top) denotes the power and
the High Frequency (HF) power (dB) (bottom).
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calculated by the root mean square of the sound pressure, relative to the auditory threshold
P0 (i.e., in deciBel (dB) (SPL)). Its discrete equivalent is defined as [554]:

20 log10

1

P0

√

√

√

√

1

N

N−1
∑

n=0

x2(n), (8.2)

where the (sampled) amplitude of the signal is denoted as x(n) in Pa (Pascal) [54]. See
Figure 8.3b for an example of the signal power.

The third feature that was computed was the zero-crossings rate of the speech signal.
We refrain from defining the continuous model of the zero-crossings rate, since it would
require a lengthy introduction and definition (cf. [552]). This falls outside the scope of this
chapter.

Zero crossings can be conveniently defined in a discrete manner, through:

1

N

N−1
∑

n=1

I {x(n)x(n − 1) < 0}, (8.3)

where N is the number of samples of the signal amplitude x. The I {α} serves as a logical
function [331]. An example of this feature is shown in Figure 8.3c. Note that both power
and zero-crossings are defined through the signal’s amplitude x; see also Figure 8.2, which
depicts this relation

The fourth feature that was extracted is the high-frequency power [27]: the power for
the domain [1000,∞], denoted in Hz. In practice, ∞ takes the value 16, 000. To enable this,
the signal was first transformed to the frequency domain; see also Figure 8.3d. This is done
through a Fourier transform X(f) (see also Figure 8.2), defined as [432]:

X(f) =

∫ ∞

−∞

x(t)e−j2πft dt, (8.4)

with j representing the
√
−1 operator. Subsequently, the power for the domain [F1, F2] is

defined as:

20 log10

√

1

F2 − F1

∫ F2

F1

|X(f)|2 dt. (8.5)

For the implementation of the high-frequency power extraction, the discrete Fourier
transform [432] was used:

X(m) =
1

N

N−1
∑

n=0

x(n)e−j2πnm/N , (8.6)
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8 Two clinical case studies on bimodal health-related stress assessment

with j representing the
√
−1 operator and where m relates to frequency by f(m) = mfs/N .

Here, fs is the sample frequency and N is the number of bins. N typically takes the value
of the next power of 2 for the number of samples being analyzed; for example, 640 for a
window of 40 msec. sampled at 16, 000 Hz. The power for the domain [M1, M2], where
f(M1) = 1000 Hz and f(M2) = fs/2 (i.e., the Nyquist frequency), is defined by:

20 log10

1

P0

√

√

√

√

1

M2 − M1

M2
∑

m=M1

|X(m)|2. (8.7)

The fundamental frequency (F0) (or perceived pitch, see Table 2.2) was extracted using
an autocorrelation function. The autocorrelation of a signal is the cross-correlation of the
signal with itself. The cross-correlation denotes the similarity between two signals, as a
function of a time-lag between them. In its continuous form, the autocorrelation r of signal
x at time lag τ can be defined as [53]:

rx(τ) =

∫ ∞

−∞

x(t)x(t + τ) dt (8.8)

In the discrete representation of Eq. 8.8, the autocorrelation R of signal x at time lag m

is defined as [607]:

Rx(m) =

N−1
∑

n=0

x(n)x(n + m) (8.9)

where N is the length of the signal. The autocorrelation is then computed for each time lag
m over the domain M1 = 0 and M2 = N − 1. The global maximum of this method is at lag 0.
The local maximum beyond 0, lag mmax, represents the F0, if its normalized local maximum
Rx(mmax)/Rx(0) (its harmonic strength) is large enough (e.g., > .45). The F0 is derived by
1/mmax. See Figure 8.3e for an illustrative output of this method.

Throughout the years, various implementations have been proposed for F0 extraction;
for example, [53, 607]. See Table 2.2 for a discussion on speech signal processing and on F0
extraction in particular. In this research, we have adopted the implementation as described
in [53]. This implementation applies a fast Fourier transform (see also Eq. 8.4 and Eq. 8.6) to
calculate the autocorrelation, as is often done; see [53, 607] and Table2.2. For a more detailed
description of this implementation, we refer to [53].

Of all five speech signal features, 13 statistical parameters were derived: mean, median,
standard deviation (std), variance (var), minimum value (min), maximum value (max),
range (max − min), the quantiles at 10%(q10), 90%(q90), 25%(q25), and 75%(q75), the
inter-quantile-range 10% − 90% (iqr10, q90 − q10), and the inter-quantile-range 25% − 75%
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(iqr25, q75 − q25). Except for the feature amplitude, the features and statistical parameters
were computed over a time window of 40 msec., using a step length of 10 msec.; that is,
computing each feature every 10 msec. over the next 40 msec. of the signal. Hence, in total
65 (i.e., 5 × 13) parameters were determined from the five speech signal features.

8.8 Results

We analyzed the Stress-Provoking Story study and the Re-Living study separately. The anal-
yses were the same for both studies; with both studies, the SUD scores were reviewed and
an acoustic profile was generated.

The acoustic profiles were created with an LRM [262]. An LRM is an optimal linear
model of the relationship between one dependent variable (e.g., the SUD) and several inde-
pendent variables (e.g., the speech features). An LRM typically takes the following form:

y = β0 + β1x1 + · · ·+ βpxp + ε,

where ε represents unobserved random noise, and p represents the number of predictors
(i.e., independent variables x and regression coefficients β). The linear regression equation
is the result of a linear regression analysis, which aims to solve the following n equations in
an optimal fashion. For more information on LRM, we refer to Appendix A.

It was expected that the acoustic profiles would benefit from a range of parameters de-
rived from the five features, as it is known that various features and their parameters have
independent contributions to the speech signal [369]. In order to create a powerful LRM,
backward elimination/selection was applied to reduce the number of predictors. With back-
ward elimination/selection, first all relevant features/parameters are added as predictors to
the model (the so-called enter method), followed by multiple iterations removing each pre-
dictor for which p < α does not hold [155, 262]. In this research, we chose α = .1, as the
(arbitrary) threshold for determining whether or not a variable had a significant contribu-
tion to predicting subjective stress.

The backward elimination/selection stops when for all remaining predictors in the
model, p < α is true. As the backward method uses the relative contribution to the model
as selection criteria, the interdependency of the features is taken into account as well. This
makes it a robust method for selecting the most relevant features and their parameters. This
is crucial for creating a strong model, because it has been shown that inclusion of too many
features can reduce the power of a model [142]. As the general practice of reporting the
explained variance of a regression model, R2, does not take this into account, the adjusted
R2, R

2
was computed as well. The R

2
penalizes the addition of extra predictors to the model,

and, therefore, is always equal to or lower than R2.
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Figure 8.4: Reported stress over time per session (i.e., anxiety triggering and happy) for the
Stress-Provoking Stories (SPS) study.

8.8.1 Results of the Stress-Provoking Story (SPS) sessions

Changes with respect to the SUD in the course of the sessions of the SPS study were analyzed
first. No main effects of the SPS session (happy or anxious) or measurement moment (first,
second, or third minute of storytelling) on the SUD scores were found in an ANOVA, nor
did any significant interaction effect between these factors appear. A closer look at the SUD
scores in the stress-provoking session showed that the experienced stress reported by the
patients increased in the course of storytelling, as indicated by a trend in the ANOVA for
the factor measurement moment, F (2, 67) = 2.59, p < .010. Figure 8.4 illustrates this trend.
In addition, Figure 8.4 shows the confidence intervals, only without variability associated
with between-subjects variance (cf. [128]).

Next, a robust acoustic profile was created of the speech characteristics sensitive to
stress. This profile was generated after 20 iterations of the backward method, leaving 30

significant predictors explaining 81.00% of variance: R2 = .810, R
2

= .757, F (30, 109) =

15.447, p < .001. Before applying the backward method (i.e., before any predictors were
removed), 50 predictors explained 82.60% of variance: R2 = .826, R

2
= .728, F (50, 89) =

8.445, p < .001. These results indicate that the amount of variance explained through the
acoustic profile is high (i.e., R

2
> .75), as was expected based on the literature [369].

8.8.2 Results of the Re-Living (RL) sessions

Similar to the analyses performed for the SPS sessions, the analyses for the RL sessions
start with an ANOVA of the changes in SUD during the course of the sessions. The results
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Figure 8.5: Reported stress over time per session (i.e., anxiety triggering and happy) for the
Re-Living (RL) study.

were similar to the SPS analyses: no main effects of the RL session (happy or anxious) or
time (first, second, or third minute of storytelling) on the SUD scores were found, nor did
a significant interaction effect appear. Again, there was a trend in the anxiety triggering
condition for patients to report more experienced stress later-on in the course of re-living, as
indicated by a trend in the ANOVA for the factor time, F (2, 69) = 2.69, p < .010. This trend
is also evident in Figure 8.5. Note that Figure 8.5 shows the confidence intervals without
between-subjects variance (cf. [128]).

A strong acoustic profile for the RL session was created by means of the speech char-
acteristics that are sensitive to stress. An LRM based upon all relevant features and their
parameters (49 predictors) explained 69.10% of variance: R2 = .691, R

2
= .530, F (49, 94) =

4.29, p < .001. A smaller LRM, based only on the significant features, used 23 predictors
explaining 64.80% of variance: R2 = .648, R

2
= .584, F (22, 121) = 10.12, p < .001. These

results indicate that, for the RL sessions, the subjectively reported stress could be explained
very well, as was expected based on the literature [369]. However, the explained variance
was lower than for the SPS sessions.

8.8.2.A Overview of the features

A comparison of the LRM of the RL sessions and the SPS sessions shows that there are
13 shared predictors: pitch iqr25 and var ; amplitude q75, var, and std ; power iqr25, q25,
and std ; zero-crossings q25 and q10 ; high-frequency power var, std, and mean. However,
this comparison is misleading due to the role of the interdependency of the predictors in
specifying whether or not they have a significant contribution to the estimate. Hence, for
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Table 8.2: Correlations between Subjective Unit of Distress (SUD) and the parameters of
the five features derived from the speech signal, both for the Re-Living (RL) and the Stress-
Provoking Stories (SPS) study.

Amplitude Power ZC HFP F0
Parameter RL SPS RL SPS RL SPS RL SPS RL SPS
iqr25 -.314¶ -.426¶ -.233§ -.327¶ -.355¶

q75 -.227§ -.258§ -.196∗ -.298¶ -.182∗

q25 -.234§ -.244§

iqr10 -.218§ -.358¶ -.428¶ -.197∗ -.356¶ -.422¶

q90 -.209∗ -.191∗ -.228§ -.189∗ -.296¶ -.224§

q10 .225§ .200∗ .180∗ -.229§ .222§ .168∗ -.306¶ -.193∗

median -.180∗ -.180∗ -.271§ -.202∗

min .223§ -.329¶ .227§

max -.192∗ -.168∗

range -.282¶ -.243§ -.179∗ -.304¶ -.312¶

var -.184∗ -.327¶ -.411¶ -.249§ -.317¶ -.384¶

std -.202∗ -.351¶ -.433¶ -.250§ -.354¶ -.413¶

mean -.290¶ -.335¶ -.255§

Levels of significance. ∗p < .05, §p < .01, ¶p < .001.
Abbreviations. ZC: Zero-Crossings rate, HFP: High-Frequency Power.

a more appropriate comparison, we used a simpler approach; namely, by computing the
linear correlation of each feature and its parameters independently of each other for both
data sets (i.e., the RL and SPS data). See Table 8.2 for the results.

Table 8.2 shows which predictors are robust for both data sets and which are not; that
is, which features show a significant linear correlation for the RL as well as the SPS sessions.
The F0 is uniformly robust, namely on its mean and cumulative distribution (q10, q25, me-
dian, q75, q90). Power and high-frequency power show similar patterns, though more to-
wards parameters describing the lower part of the cumulative distribution (q10, iqr10, iqr25)
and more general statistical parameters used to describe the distribution (std, var, range),
only without the mean. There is a perfect similarity between power and high-frequency
power in which parameters are relevant for both data sets. The features amplitude and
zero-crossings have no parameters relevant for both data sets. Concluding, it seems that F0,
power, and high-frequency power, are especially robust features for both data sets.

8.9 Discussion

In this section, we will first briefly discuss the results of both the SPS and RL studies. Next,
the results of both studies will be compared to each other. Moreover, the results of both
studies will be related to relevant theory.
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8.9.1 Stress-Provoking Stories (SPS) study

Stress was successfully induced in and reported by our PTSD patients, using the telling of
a carefully created story to induce an affective state (cf. [685]). We were able to define and
evaluate an acoustic profile of stress features in speech by comparing speech characteristics
to a subjective report of stress. The acoustic profile was shown to explain at best 82.60% of
variance of subjectively reported experienced stress.

In interpreting the results, two factors will be differentiated: the experienced and the
expressed emotions. In essence, the experienced emotions were targeted by the SUD. Al-
though there was quite some substantial variability in the reported experience, the SUD
seemed to have uncovered some expected effects; for example, the stress in the stress in-
ducing story appeared to develop through the course of telling the story. The substantial
variability might hint at inter-personal differences which were not evidently expected from
the highly standardized stimuli, but which the SUD was able to measure (cf. [367, 368]). Fur-
thermore, another issue can be noted in the experience of the stories; namely, stories develop
over time, which implies that a build-up is necessary before an affective state is induced.

As indicated by the explained variance of the acoustic profile, the expressed emotions
seem to reflect the experienced emotions very well. In other words, using triangulation
through various speech characteristics and the SUD scores indicated that true emotions were
indeed triggered and expressed. Hence, although storytelling is only one of many ways to
induce emotions, it was particularly useful in creating an emotion-induced speech signal.
Contrary to many other methods, of this method the therapists assured us that true emotions
would be triggered.

8.9.2 Re-Living (RL) study

Apart from the Stress-Provoking Story (SPS) study, our research included a study in which
participants re-lived their traumatic event. As such, this research presents unique data,
containing very rare displays of intense, real, emotions; hence, a data set with high ecological
validity.

An LRM was generated which explained at best 69.10% of variance in SUD scores, us-
ing the RL data set. Although lower than in the SPS study, it is still a very high percentage of
explained variance. In interpreting these results, again, we differentiate between the experi-
enced and expressed emotion and used the SUD scores to capture the experienced emotions.
The same issues can be denoted as for the SPS study: the SUD scores tended to vary quite
substantially across patients, and both showed a build-up in affective state throughout the
session. Hence, the experienced emotions varied between patients, which can be expected
as the sessions were relatively less standardized [367, 368]; that is, the patients were merely
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8 Two clinical case studies on bimodal health-related stress assessment

guided in experiencing true emotions. Furthermore, the latter issue is in line with what is
known on emotions and their accompanying reactions; that emotions can (indeed) accumu-
late over time [221, 679].

The expressed emotions are intense displays of emotions; as such, parts of the speech
signal even had to be cleaned from non-speech expressions (e.g., crying). Hence, the speech
signal clearly reflected emotions. As such, the presented LRM is a rare and clear acoustic
profile of true emotions.

8.9.3 Stress-Provoking Stories (SPS) versus Re-Living (RL)

Several differences were found between the studies: the SUD scores for the RL sessions
were not significantly higher than for the SPS sessions, and the explained variance of the
acoustic profiles was 13.50% lower for the RL study than for the SPS study. Moreover, when
comparing the features by their simple linear correlation with the SUD data, it was shown
that some features were clearly robust for both studies (i.e., power, high-frequency power,
and F0), whereas some were not (i.e., amplitude and zero-crossings rate). In sum, there were
22 parameters (of which 17 were in the amplitude and zero-crossings rate features) which
worked for only one of the data sets and 18 parameters which worked for both data sets.
The robust parameters could be grouped into specific meaningful parts of the features: for
the F0 its mean and cumulative distribution (q10, q25, median, q75, q90), and for power and
high-frequency power their lower part of the cumulative distribution (q10, iqr10, iqr25) and
more general statistical parameters used to describe the variation of the distribution (std,
var, range). Concluding, there were substantial similarities as well as differences between
the studies, which will be discussed next.

Considering the experienced emotions, the results were counter-intuitive: the reported
stress was not significantly higher in the RL study than in the SPS study. Hence, either the
experience was indeed not different from the SPS studies, or introspection is fallible. There
were, of course, differences in the experienced emotions between the studies (i.e, the stimuli
were different; cf. [8]). Storytelling was used as a highly standardized laboratory method,
whereas the re-living sessions were indeed closer to the patients’ experiences. Moreover,
this view is also supported by the differences between the acoustic profiles and, by qual-
itative judgements of the patients’ psychiatrists also present during the studies. Hence,
this would indicate that the SUD scores were a non-perfect mapping on the truly experi-
enced stress. Even if the actual experienced emotions differed between studies, this should
not have caused any differences, as the SUD was designed to query this exact experience.
Hence, introspection seems to be fallible. Of course, the problems with introspection are not
new; tackling them is one of the core motivations for this study. Moreover, we analyzed the
SUD scores as an interval scale, an assumption that might not be correct.
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The differences between the SPS and the RL study can also be explained by the no-
tion of emotion specifity or cognitive versus emotional stress [367, 415, 563, 564]. Cognitive
stress is defined as the information processing load placed on the human operator while
performing a task. Emotional stress is the psychological and physiological arousal due to
emotions triggered before or during a task. Both the research setting and the therapeutic
setting could have caused cognitive stress; so, this would not discriminate between the two
studies. However, the cognitive stress possibly had a higher impact on the speech signal ob-
tained with the SPS study than on that obtained with the RL study, where emotional stress
was dominant.

Part of the explanation may also lie with the expression of emotions. Already more
than a century ago [439], the differentiation between emotional and emotive communication
was noted. Emotional communication is a type of spontaneous, unintentional leakage or
bursting out of emotion in speech. In contrast, emotive communication has no automatic or
necessary relation to “real” inner affective states. Emotive communication can be defined
as strategic signaling of affective information in speaking to interaction partners. It uses
signal patterns that differ strongly from spontaneous, emotional expressions and can be both
intentionally and unintentionally accessed [27]. It is plausible that in the RL study relatively
more emotional communication took place, while emotional expressions in the SPS study
were based more on features of emotive communication.

When the differences in results between the SPS and the RL study are explained in
terms of the distinction between emotional and emotive communication [27, 334, 439], in-
teresting conclusions can be drawn. The intersection of the parameter sets of both studies
should then reflect the aspects of the speech signal that are used with emotional communica-
tion. The RL study triggered “real” emotions and in the SPS study probably “real” emotions
were also revealed in addition to the emotive communication. Consequently, the parameters
unique for the SPS study should reflect characteristics of the speech signal that represents
emotive communication. Additionally, the parameters unique for the RL study should re-
flect characteristics of the speech signal that represents emotional communication. Further
research investigating this hypothesis is desirable.

Having discussed hypotheses based on both the distinction between cognitive and
emotional stress and the theory on emotive and emotional communication, both notions
should also be taken together. Communication as expressed with emotional stress [367,
415, 563, 564] and emotional communication [27, 439] could point to the same underlying
construct of emotionally loaded communication. However, this does not hold for cognitive
stress [367, 415, 563, 564] and emotive communication [27, 334, 439]. It is possible that both
cognitive stress and emotive communication played a significant role in the SPS study. This
would then involve a complex, unknown interaction. An initial description could include
the intersection of both parameter sets that could reveal the aspects of the speech signal that
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8 Two clinical case studies on bimodal health-related stress assessment

are used both with emotional and emotive communication. This could reflect the cognitive
stress experienced. Consequently, the parameters unique for the SPS study would reflect the
interaction between emotive communication and cognitive stress. The parameters unique
for the RL study would then reflect “real” stress, as was meant to be. If true, this hypothesis
would have substantial impact on emotion literature. Therefore, a substantial amount of
follow-up research should conducted with the aim to unravel the relation between these
theoretical constructs as well as their relation to speech.

8.10 Reflection: Methodological issues and suggestions

The design of this research makes it unique in its kind; see also Figure 8.1. Two studies
were conducted, which were alike and at the same time completely different. The Stress-
Provoking Stories (SPS) study comprised a controlled experimental method intended to
elicit both stress and more happy feelings. Within the Re-Living (RL) study, true emotions
linked to personally experienced situations were facilitated. The same patients participated
in both studies. The studies were executed sequentially, in a counterbalanced order.

A question which is often posed is whether ‘true’ emotions can be triggered in con-
trolled research environments. Moreover, if emotions can be triggered in controlled research,
how do they relate to emotions experienced in everyday life? Is it only the intensity in which
they differ or do different processes underly real-life situations? These questions are hard
to answer solely based on a review of the literature. Problems arise when one compares
empirical studies.

The validity of the current research is high. Content validity is high as a) the research
aimed at a specific group of patients, b) the SUD as well as the speech signal features and
their parameters were chosen with care, all denoted repeatedly in the literature; see also
Section 8.4, and c) the SUD in combination with the speech signal features chosen provide
a complete image of the patients’ emotional states, as has been shown. Criteria-related va-
lidity is also high as the speech signal was the preferred measurement, being robust and
unobtrusive. Moreover, we were able to record emotions real-time. The SUD was provided
each minute, which can also be considered as accurate, given the context. The construct va-
lidity is limited since for both stress and emotions various definitions exist and no general
consensus is present. Moreover, no relations have been drawn between emotion, stress, psy-
chological changes, physiological changes, and the speech signal. The ecological validity is
high, at least for one of the studies. For the other study the ecological validity is limited, as
illustrated by the difference in results between both studies.

The principle of triangulation is applied [273]; that is, multiple operationalizations of
constructs were used. The distinct speech signal features could be validated against each
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other and against the SUD. Extrapolations were made using the data sets of both studies
and a set of common discriminating speech features were identified. Moreover, the SUD
was used as ground truth. However, this required introspection of the patients, which is
generally not considered as the most reliable measure.

This research has used one signal; hence, no multi-model integration of signals has
been applied. However, for both studies, the features and their parameters were all in-
tegrated in one LRM. Additional other signals were omitted on purpose since they could
contaminate the ecological validity of the research, as they would interfere with the actual
tasks the patients had to perform.

CAD should be able to function in a setting such as in which this research was con-
ducted; hence, having the same characteristics. In general, these are average office settings.
Within reason, the speech signal processing scheme 8.2 should be able to handle changing
characteristics of an office, which could influence the room’s acoustics. However, there are
no indications for any problems that could occur as a results of this.

8.11 Conclusions

This chapter has presented two studies in which the same PTSD patients participated. This
provided us with two unique data sets. This has revealed interesting common denomina-
tors as well as differences between both studies, which are of concern for several theoretical
frameworks, as was denoted in the previous section. Moreover, a thorough discussion has
been presented, in two phases. First, the results of both studies were discussed and, subse-
quently, related to each other. Second, a range of aspects concerning the complete research
were discussed. This emphasized the strength of the research presented and also provided
interesting pointers for follow-up research.

A Linear Regression Model (LRM) was developed, derived from the data of each of
the studies. These LRMs explained respectively 83% of the variance for the SPS study and
69% of the variance for the RL study, which are both high. Founded on the results of both
studies, a set of generic features has been defined; see also Table 8.2. This set could serve
as the foundation for the development of models that enable stress identification in a robust
and generic manner.

It would also be of interest to apply such a model on patients suffering from other
related psychiatric disorders, such as depression [9, 333] and insomnia [9, 267]. Probably,
even for less related psychiatric disorders, the current approach would be a good starting
point. In such a case, the general framework and speech signal processing scheme (see
Figure 8.2), as presented in this chapter, could be employed. Most likely, only the set of
parameters used for the LRM would have to be tailored to the specific disorders.
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8 Two clinical case studies on bimodal health-related stress assessment

The speech signal processing approach used in this research could also be linked to
approaches that measure physiological responsiveness of PTSD in other ways; for example,
using biosignals or computer vision techniques (see Chapter 2). This would facilitate a tri-
angulation of the construct under investigation, providing even more reliable results [680].
Furthermore, more specific analyses can be conducted; for example, in terms of either the
valence and arousal model or discrete emotion categories [680] (cf. Chapters 6 and 5). How-
ever, it also has its disadvantages, as discussed in the previous section.

Taken together, an important and significant step has been made towards CAD for
treatment of patients suffering from a PTSD in particular and stress-related psychiatric dis-
orders in general. Through the design of the research, it was made sure that “real” emotions
were measured. Subsequently, their objective measurement through speech signal process-
ing was shown to be feasible. Models were constructed, founded on a selection from 65

parameters of five speech features. With up to 83% explained variance, the models were
shown to provide reliable, robust classification of stress. As such, the foundation was devel-
oped for an objective, easily usable, unobtrusive, and powerful CAD.

With this chapter, theory has been brought to (clinical) practice. Through two studies,
it is shown how rich speech is as an indirect biosignal. As such, it can be valuable even
without other biosignals added to it. This provides us with an indirect completely unobtru-
sive biosignal on which models were build that can serve as an expert system in psychiatric
practice. The next chapter has little in common with the current chapter except that it also
explores the feasibility of building emotion-aware systems. In the current chapter, the re-
search presented in this chapter will be fed to the signal processing + pattern recognition
pipeline, aw was introduced in Section 1.5 (see also Figure 1.2) and already employed in
Chapter 7. Again, a range of signal processing and machine learning techniques will be
presented, which will bring us close to the envisioned emotion-aware systems: ASP -based
Computer-Aided Diagnosis (CAD) for mental health care.
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Abstract

This chapter is the second of the set of two chapters that aim towards bringing affective com-
puting to practice. The previous chapter described two studies with the aim to employ ASP
to initialize Computer-Aided Diagnosis (CAD) for mental health care. This chapter continues
this endeavor with the data of these two studies. Two instruments were chosen to assess the
stress level of the patients at various point in time during therapy: i) speech, used as an objec-
tive and ubiquitous stress indicator, and ii) the Subjective Unit of Distress (SUD), a clinically
validated Likert scale. In total, 13 statistical parameters were derived from each of 5 speech
features: amplitude, zero crossings, power, high-frequency power, and pitch. To model the
emotional state of the patients, 28 parameters were selected from this set by means of a linear
regression model presented in the previous chapter. Subsequently, this representation was
compressed into 11 principal components. The SUD and speech model were cross-validated,
using 3 machine learning techniques (i.e., k Nearest Neighbors, Support Vector Machines,
and Multi-Layer Perceptron neural network). Between 90% (2 SUD levels) and 39% (10 SUD
levels) correct classification was achieved. The two sessions could be discriminated in 89%

(for ST) and 77% (for RL) of the cases. This report fills a gap between laboratory and clini-
cal studies, as presented in the previous chapter, and its results emphasize the usefulness of
Computer Aided Diagnostics (CAD) for mental health care.

This chapter is based on:

Broek, E.L. van den, Sluis, F. van der, and Dijkstra, T. Cross-validation of bimodal health-

related stress assessment. Personal and Ubiquitous Computing. [in press]



9.1 Introduction

9.1 Introduction

Both researchers and clinicians have searched for a long time for more objective, ubiquitous
ways to measure stress-like phenomena in (patient) populations [17, 402, 483], involving,
for instance, the use of virtual reality technology and biofeedback [506]. In parallel, ubiq-
uitous computing has gradually emerged as an increasingly important paradigm over the
last two decades. Excellent up-to-date state-of-the-art overviews on ubiquitous computing
are provided by Krumm [363] and Friedewald and Raabe [207]. In addition to the notion
of computing itself, intelligence and emotion quickly became important terms in ubiquitous
computing. However, as shown repeatedly over 15 years, modeling these is still a bridge too
far for current state-of-the-art science and technology (cf. [521]). Even last year, it was re-
marked that “pervasive healthcare research in the field of stress prevention is still at an exploratory
stage” [17, p. 70]. Despite such scepticism, the ability to reliably and unobtrusively recognize
stress in people might make a more realistic (and consequently better) starting point than
either affective computing or modeling general (human) intelligence.

In this research, the same 13 statistical parameters were derived from the five speech
signal features as were in the previous chapter, namely: mean, median, standard deviation
(std), variance (var), minimum value (min), maximum value (max), range (max − min), the
quantiles at 10%(q10), 90%(q90), 25%(q25), and 75%(q75), the inter-quantile-range 10%−90%

(iqr10, q90−q10), and the inter-quantile-range 25%−75% (iqr25, q75−q25). The features and
statistical parameters were computed over a time window of 40 ms, using a step length of
10 ms, as was done in Chapter 8. However, in this research two variations of amplitude
will be reported, instead of one as was done in Chapter 8. The amplitude was determined
as both the mean amplitude per window of 40 ms (reported as amplitude(window)) and as
calculated over the full signal (reported as amplitude(full)). So, in total, not 65 but 6×13 = 78

parameters were determined on the basis of the speech signal features.

9.2 Speech signal processing

The quest for self-calibrating algorithms for consumer products, either personalized or ubiq-
uitous, provided some constraints on speech signal processing. For example, no advanced
filters should be needed, the algorithms should be noise-resistant and they should (prefer-
ably) be able to handle corrupt data.

We therefore only applied some basic preprocessing to the speech signal: outlier re-
moval, data normalization, and parameter derivation from the complete set of features. The
first and last aspects require some clarification.
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9 Cross-validation of bimodal health-related stress assessment

9.2.1 Outlier removal

The same procedure for outlier removal was executed on all speech features. It was based
on the inter-quartile range IQR, defined as:

IQR = Q3 − Q1, (9.1)

with Q1 being the 25th percentile and Q3 being the 75th percentile. Subsequently, x was
considered to be a normal data point if and only if:

Q1 − 3IQR < x < Q3 + 3IQR. (9.2)

All data points that did not satisfy Eq. 9.2 were removed from the data set.

9.2.2 Parameter selection

To achieve good classification results with pattern recognition and machine learning meth-
ods, the set of selected input features is crucial. The same holds for classifying stress and
emotions. However, there is no criterion function available for our data to define an opti-
mal set of features. As a consequence, an exhaustive search in all possible subsets of input
parameters (i.e., 278) was required to guarantee an optimal set [130]. To limit this enormous
search space, a LRM-based heuristic search was applied, using α ≤ 0.1, which can be con-
sidered as a soft threshold.

Similar as in the previous chapter, an LRM was generated using all available data. The
process started with the full set of parameters and, then, reducing it in 32 iterations by means
of backward removal to a set of 28 parameters. The final model is shown in Table 9.2.2. The
parameters in Table 9.2.2 are considered to be the optimal set of parameters and used further
on in the processing pipeline.

The LRM in Table 9.2.2 explained 59.2% (R2 = .592, F (28, 351) = 18.223, p < .001) of the
variance. This amount of explained variance is low in comparison to previously reported
results [714, Chapter 10]: an LRM model based only on the story telling (ST) conditions
explained 81.00% of variance: R2 = .810, R

2
= .757,

F (30, 109) = 15.447, p < .001, whereas a model based only on the re-living (RL) conditions
explained 64.80% of variance: R2 = .648, R

2
= .584, F (22, 121) = 10.12, p < .001. The

difference in explained variance can be attributed to the selection of data on which the LRMs
were based. First, the speech data in the ST conditions are cleaner than in the RL conditions,
yielding better models for the ST data. Second, the baseline conditions have normal levels
of variance in the speech parameters, but almost no variance in SUD responses; almost no
stress was reported in the baseline conditions. This combination of points led to more noise
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9.2 Speech signal processing

Table 9.1: Standardized regression coefficients β of a LRM predicting the SUD using speech
parameters. HF denotes High-Frequency.

Parameters Features
Amplitude Amplitude Power Zero-Crossings HF Energy Pitch

(full) (window)
mean -1.90*** -2.04* -0.75**
median 1.57***
std 2.32** -1.52*
var 0.83*** -0.22* -1.71 0.67*** 2.04*** 0.10
min 0.61**
max -0.12*
range
q10 -0.26** 0.70*
q25 1.23*** -2.14*** 0.97*** 1.39** 0.66**
q75 1.54*** 0.63***
q90 -1.68*** 0.78*** 0.53***
iqr10
iqr25 -1.16*** 0.20*
Levels of significance: *** p ≤ .001, ** p ≤ .01, *p ≤ .05. For all other parameters: p ≤ .10.

in the relation between SUD and speech parameters. However, because the LRM in Table
9.2.2 is used for preprocessing and not as an end result, the LRM had to be applicable to the
full data set; hence, it was based on all available data.

9.2.3 Dimensionality Reduction

A Principal Component Analysis (PCA) can be used to further reduce the dimensionality of
the set of speech signal parameters, while preserving its variation as much as possible; see
also Appendix A. The speech parameters are transformed to a new set of uncorrelated but
ordered variables: the principal components α · x. The first principal component represents,
as well as possible, the variance of the original parameters. Each succeeding component
represents the remaining variance, as well as possible. Once the vectors α are obtained, a
transformation can map all data x onto its principal n components:

x → (α0 · x, α1 · x, . . . , αn−1 · x) .

Out of the 78 parameters selected by means of the LRM on the basis of the 5 speech
signal features, we selected 28. These 28 parameters were fed to the PCA transformation.
Subsequently, the first 11 principal components from the PCA transformation were selected,
covering 95% of the variance in the data. These principal components served as input for
the classifiers that will be introduced next.
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9.3 Classification techniques

In our study, three classification techniques were used: k-nearest neighbors (k-NN), in gen-
eral considered a benchmark classifier, and Support Vector Machines (SVM) and Multi-
Layer Perceptron (MLP) neural network as state-of-the-art techniques. For an introduction
to these techniques, we refer to the many handbooks and survey articles that have been
published; we will only specify them here for purpose of replication.

9.3.1 k-Nearest Neighbors (k-NN)

We used WEKA’s [252] k-NN implementation, based on Aha, Kibler, and Albert’s instance-
based learning algorithms [4]. In our study, its output was a probability of classification to
each of the classes, but not the resulting class. In other words, if there was a single winning
class, the output was 100% for the winning class and 0% for all the other classes. In the case
of a tie between multiple classes, the output is divided between them and 0% is provided
to the rest. All the recognition rates of the k-NN classifier reported here were obtained by
using this modified algorithm.

A correct metric and an appropriate k are crucial parameters of a k-NN classifier. In
the current study, the 1 − distance distance weighting metric, a brute force neighbor search
algorithm, and setting k = 4, provided the best results. For more information on k-NN, I
refer to Appendix A.

9.3.2 Support vector machines (SVM)

One of its key parameters for SVM regularization is its cost parameter C (i.e., the cost of
misclassifying points). This allows some flexibility in separating the classes as it determines
the number of training errors permitted and, hence, it does or does not enforce rigorous
margins. As such the parameter C determines the trade off between accuracy of the model
on the training data and its ability to generalize. For this data set, C was set on 1.

Another key feature of SVM is its kernel function, which characterizes the shapes of
possible subsets of inputs classified into one category [586]. Being SVM’s similarity measure,
the kernel function is the most important part of an SVM. We applied a radial basis function
kernel, defined as:

kG(xi, x
l) = exp

(

−γ|xi − xl|2
)

,

where xi is a feature vector that has to be classified, xl is a feature vector assigned to a
class (i.e., the training sample), and γ is set to 1/28, with 28 being the number of input
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parameters [586]. Note that the radial basis function is a variant of the Gaussian kernel
function.

For the SVM, the LibSVM implementation [96] was used, using the cost parameter C

and the kernel described here. For all other settings, the defaults of LibSVM were used [96].
For more information on SVM, I refer to Appendix A.

9.3.3 Multi-Layer Perceptron (MLP) neural network

We computed WEKA’s [252] MLP trained by a back-propagation algorithm. It used gradient
descent with moment and adaptive training parameters. For more information on artificial
networks, MLP in particular, I refer to Appendix A. In our case, an MLP with 3 layers with
7 nodes in the hidden layer was shown to have optimal topology. This topology was trained
with 500 cycles. For all other settings, the defaults of WEKA were used [252].

9.4 Results

Using the three classifiers introduced in the previous section, we conducted two series of
analyses:

1. Cross-validation of the (precision of the) SUD with the parameters of the speech signal
features that are classified by the k-NN, SVM, and MLP. On the one hand, this verifies
the validity of the SUD; on the other hand, this determines the performance of the
three classifiers in objective stress detection.

2. Classification of the happiness and fear conditions of both studies. This enables the in-
spection of the feasibility of CAD for PTSD. Additionally, analyses across both studies
and of the baselines were conducted to inspect the effects of experimental design.

The input for the classifiers were the principal components described in the previous section.
All classifiers were tested using 10-fold cross-validation, and their average performance is
reported in Table 9.2.

9.4.1 Cross-validation

The SUD scale consisted of 11 bins (from 0 to 10). However, SUD score 10 was not used by
any of the patients and, hence, could not be classified. So, for the classification 10 bins (i.e.,
SUD levels 0 to 9) were used. All three classifiers were successfully employed.

Assuming the SUD provides a valid comparison for the speech parameters, we clas-
sified the SUD scores over both studies, including both conditions and their baselines. All
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Table 9.2: The classification results (in %) of k-nearest neighbors (k-NN), support vector
machine (SVM) (see also Figure 9.4.1), and artificial neural network (ANN). Correct clas-
sification (CN ), baseline (or chance) level for classification (µN ), and relative classification
rate (C∗

N ; see also Eq. 9.3) are reported. The Subjective Unit of Distress (SUD) was taken as
ground truth, with several quantization schemes. N indicates the number of SUD levels.

N µN k-NN SVM ANN
CN C∗

N CN C∗
N CN C∗

N

2 50.00 89.74 79.74 89.74 79.47 82.37 64.74
3 33.33 74.74 124.21 78.16 134.47 72.37 117.11
4 25.00 68.42 173.68 66.32 165.26 57.37 129.47
5 20.00 53.42 167.11 55.00 175.00 48.95 144.74
6 16.67 52.63 215.79 53.42 220.53 47.63 185.79
7 14.29 44.74 213.16 47.11 229.74 42.37 196.58
8 12.50 42.89 243.16 43.16 245.26 41.58 232.63
9 11.11 42.89 286.05 44.21 297.89 34.74 212.63

10 10.00 38.95 289.47 38.68 286.84 36.32 263.16

classifiers had to be capable of detecting stress from speech, in particular when classification
was simplified to the binary comparison of low versus high stress. The correct classification
rate (CN ) by the k-NN, SVM, and MLP was, respectively, 89.74, 89.74, and 82.37 (see also
Table 9.2).

Although the SUD is an established instrument in psychology, to our knowledge the
precision of this instrument has not been assessed. The reliability of the SUD when aiming
at a high precision of reporting, such as for a scale of 0-10, could be doubted if people’s
interoception is unreliable [132]. While this point is under debate [132], patients with anxiety
disorders have recently been shown to be (over)sensitive to interoception [164].

In the current research, we not only used the SUD as a ground truth, but also quantized
the scale into all possible numbers of levels, ranging from 10 to 2. This quantization is
performed by discretizing the SUD responses into N steps, with a step size of r/N , where r

is the range of the SUD values (i.e., 9). This quantization allows us to verify the reliability of
the SUD in relation to the obtained speech parameters.

To provide a fair presentation of the classification results, we do not only provide the
correct classification rate (CN ), but also the relative classification rate (C∗

N ) for each of the
N bins. The relative classification rate expresses the improvement of the classification com-
pared to baseline (or chance) level. It is defined as:

C∗
N =

CN − µN

µN
× 100, (9.3)

with µN being the baseline (or chance) level for N classes. This relative classification rate is
also known as a range correction and used more often in health and emotion research [196].
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Figure 9.1: The overall relation between the reported Subjective Unit of Distress (SUD) and
the relative correct classification using 11 principal components based on 28 parameters of
speech features.

Consulting the relative classification rate (see Eq. 9.3) helps in determining the true
classification performance on each level of quantization of the SUD as an assessor of the
patient’s distress level. The three classifiers show an almost monotone linear increase in
relative classification rate; see Figure 9.4.1. The linear fit closely follows the data presented
in Table 9.2 for all three classifiers (explained variance: R2 = .96). This underlines the va-
lidity of the SUD as an instrument to assess people’s stress levels. Moreover, it confirms its
high concurrent validity, with its ability to discriminate between 10 levels of distress, and
indicates that its use as ground truth for stress measurement is adequate.

9.4.2 Assessment of the experimental design

The two conditions of both studies in this paper functioned as triggers of stress and re-
laxation. The former study was meant to resemble a patient’s behavior in one of his first
therapy sessions; the latter the behavior of a patient in a late therapy session. The experi-
mental design enabled us to conduct our research within a tight time window. This stands
in sharp contrast with a longitudinal study, the only research alternative.

The success of the experimental design was assessed by classifying the PCA derived
from the parameters of the speech signal features. All three classifiers (k-NN, SVM, and
MLP) were applied. On the whole, the results of the MLP were disappointing compared to
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Table 9.3: The classification results (in %) of k-nearest neighbors (k-NN) and support vector
machine (SVM). Baseline (or chance) level for classification (µN ), correct classification (CN ),
and relative classification rate (C∗

N ; see also Eq. 9.3) are reported. N takes either the value
2 or 3. Both the storytelling (ST) and reliving study (RL) analyzed, with + and − denoting
respectively the happiness and stress triggering conditions.

baseline ST ST+ ST− RL RL+ RL− µN CN C∗
N

k-NN • • 50.00 64.41 28.81
• • • 33.33 41.95 25.85

• • 50.00 72.73 45.45
• • 50.00 84.58 68.17
• • • 33.33 62.08 86.25

• • 50.00 72.92 45.83
SVM • • 50.00 64.83 29.66

• • • 33.33 48.31 44.92
• • 50.00 88.64 77.27

• • 50.00 90.42 80.83
• • • 33.33 59.58 78.75

• • 50.00 77.08 54.17

the k-NN and SVM and, as such, are of little value. Therefore, we will refrain from reporting
the results for the MLP classifier and only report those for the k-NN and SVM classifiers. We
separately compared the ST and the RL study with the baselines, which provided emotion-
ally neutral speech signals.

A comparison between the two ST conditions and the baselines (taken together) re-
vealed that they were very hard to distinguish (see also Table 9.3). This may be the case be-
cause the baselines consisted of reading a neutral story. Although ST has the advantage of a
high level of experimental control, its disadvantage became evident as well: it had a limited
ecological validity with respect to emotion elicitation. Classification of the ST conditions on
the one hand, and of the baselines on the other, confirmed this finding with 64.41% (for the
k-NN) and 64.83% (for the SVM) correct classification, respectively; see also Table 9.3. Clas-
sification of the two ST conditions only showed that these can be very well discriminated
by the SVM: 88.64% correct classification, but less so by the k-NN: 72.73% correct classifi-
cation; see also Table 9.3. These findings confirm that the neutral baseline ST laid between
both ST conditions, as it was meant to be, but making it very hard to discriminate the three
conditions.

Both RL conditions could be discriminated very well from the baselines (taken to-
gether) (see Table 9.3). Classification of the RL conditions on the one hand, and the baselines
on the other, confirmed this finding with 84.58% (for the k-NN) and 90.42% (for the SVM)
correct classification, respectively; see also Table 9.3. This result is in line with our expec-
tations, because RL was shown to truly trigger emotions in patients suffering from PTSD.
Although RL may allow less experimental control, its emotion-triggering turned out to be
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dominant. This finding stresses the need for ecologically valid research on mental health re-
lated issues. Classification results indicated also that it was harder to discriminate between
the two RL conditions, by both the k-NN and SVM, with 72.92% and 77.08% correct classi-
fication, respectively; see also Table 9.3. In part, these results undermine the validity of the
baselines for the reliving study, because other factors than emotion may have influenced the
speech signal.

9.5 Discussion

We explored the feasibility of objective, ubiquitous stress assessment, which can help both
in daily life and in therapy. To assure a controlled but ecologically valid assessment of stress,
25 PTSD patients participated in a controlled ST study and a RL study, each with a ‘happy’
and a ‘stress triggering’ session, as was exhaustively discussed in Chapter 8. The two ses-
sions were meant to represent one of the first and one of the last therapy sessions a patient
participates in. The stress level of the patients was assessed by two instruments: i) speech,
as an objective and ubiquitous stress indicator and ii) the SUD, a clinically validated Likert
scale. The SUD and speech model were cross-validated, using machine learning algorithms
(i.e., k-NN, SVM, and MLP neural network). Correct classification rates of 90%, 78%, 44%,
and 39% were achieved on, respectively, 2, 3, 9, and 10 SUD levels. Using the same classi-
fiers, the two sessions could be discriminated in 89% (for ST) and 77% (for RL) of the cases.
A clearer illustration of the difference in the level of complexity between (semi-)controlled
and real-world studies could hardly be given.

The general validity of the two reported studies was high. Content validity of the stud-
ies was high, given that i) the studies aimed at a specific group of patients (i.e., PTSD), ii)

the SUD and the speech signal features and their parameters were chosen with care (all were
prominent in the literature), and iii) the cross-validation of the SUD with the speech signal
features confirmed that they both provide a complete image of the patient’s experienced
stress. Criteria-related validity was also high, because speech was the preferred signal and
can be recorded unobtrusively. The SUD scores were provided at a rate of one a minute,
which can also be considered as accurate in the given context, as the stress level does not
fluctuate that quickly. Ecological validity was maximized. For the RL study, we obtained
natural stressors within a limited time window.

For decades, audio-based emotion recognition has been examined with a limited set of
features-parameters (≤ 64) and without any feature selection or reduction [579, 696]. In the
last decade, a brute force strategy using hundreds or even thousands of features (e.g., see
[644, 725]) has been applied more often [590]. Together with the explosion in the number of
features, feature selection/reduction strategies have claimed an increasingly important role.
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9 Cross-validation of bimodal health-related stress assessment

A machine’s recognition rate of emotional speech ranges from Banse and Scherer [27],
who report 25%/40% correct classification on 14 emotions, to Wu, Falk, and Chan [725],
who report 87%/92% correct classification on 7 emotions. The latter results, however, are
in contrast with the results on a structured benchmark reported by Schuller, Batliner, Steidl,
and Seppi [590] on the InterSpeech 2009 emotion challenge: 66%−71% (2 classes) and 38%−
44% (5 classes). Apart from the differences in classification rate and the number of classes
to be distinguished, these studies can both be questioned with respect to their ecological
validity of the experienced emotions. In contrast, in at least one of our two studies (in
particular, the RL study), true emotions were triggered. Furthermore, the ST study can
be considered as half-way between common laboratory studies and real-world studies (like
the RL study). Our classification results illustrated the considerable difference between the
compromise ST study and the real-world RL study. They show that a careful interpretation
of laboratory results is needed because a one-on-one mapping between lab and real-world
results cannot be taken for granted.

An alternative explanation for the differences between the ST and RL studies can be
sought in the expression of emotions rather than in their experience. Already in 1908, Anton
Marty [439] proposed a differentiation between emotional and emotive communication. In
emotional communication, speech serves as a spontaneous, unintentional leakage or burst-
ing out of emotion. In contrast, in emotive communication speech there is no automatic or
necessary relation to “real” inner affective states. As such, emotive communication is con-
sidered to be a strategy to signal affective information in speech. It uses signal patterns that
differ significantly from spontaneous, emotional expressions, which can be initiated both in-
tentionally and unintentionally [27, 334]. Possibly, emotional communication was dominant
in the RL study and emotive communication in the ST study. Further research may reveal
whether this distinction underlies the differences in classification in the two studies that we
observed.

9.6 Conclusion

In this paper, we have presented two studies involving one and the same group of PTSD
patients. This experimental design provided us with two unique but comparable data sets
that only differed with respect to task. As such, a comparison of two stress elicitation meth-
ods, ST and RL, was possible. The comparison revealed both commonalities and differences
between the two studies, which are directly relevant to several theoretical frameworks, such
as the ones outlined just before in the discussion.

It would be of interest to apply the models developed in this research to patients suffer-
ing from other related psychiatric disorders, such as depression [9, 333, 483], insomnia [9],
and generalized anxiety disorder [9, 506]. Probably, even for less related psychiatric dis-
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orders, the current approach would be a good starting point. In such a case, the general
framework and speech signal processing scheme, as presented in this paper, could be em-
ployed. Most likely, only the set of parameters used for the processing pipeline would have
to be tailored to the specific disorders.

Apart from being unobtrusive, the speech signal processing approach, as applied in
the current studies, has another major advantage: it enables the remote determination of
people’s stress. This feature enables its use in yet another range of contexts; for instance, in
telepsychiatry [279, 483], as personal stress indicator [17, 483], and in call-centers [182, 463]
that frequently have to cope with highly agitated customers. However, as for the different
psychiatric disorders and the other application areas mentioned, the processing pipeline
should be adapted to this situation as well.

Taken together, an important and significant step was made towards modeling stress
through an acoustic model, which can be applied in our daily lives and in mental health
care settings. By the specific research design, it was ensured that “real” stress was mea-
sured. In addition, both precise subjective measurement using the SUD, as well as objective
measurement through speech signal processing, were shown to be feasible to detect stress
and as such determine therapy progress in an unobtrusive manner. Statistical models were
constructed on the basis of a selection from 78 parameters of five speech features, which
showed reliable and robust stress classification. In sum, we hope to have shown that unob-
trusive and ubiquitous automatic assessment of emotion and experienced stress is possible
and promising.

With the next part of this monograph, Part V, I will close this monograph. This part
consists of two chapters. In the next chapter, Chapter 10, I propose a set of general guide-
lines for ASP and affective computing in general. These guidelines will stress, in separate
sections, signal processing and pattern recognition issues. The second and last chapter of
Part V, Chapter 11, is a general discussion with which I close this monograph.
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Abstract

Although emotions are embraced by science, their recognition has not yet reached a satisfying
level. Through a concise overview of affect followed by a set of studies, we provided some
insight into the problems encountered. In this chapter, we will identify guidelines for success-
ful Affective Signal Processing (ASP). First we will discuss: physical sensing characteristics,
temporal construction, normalization, and context. Second and last, guidelines for successful
classification of emotions will be presented, which will include validation (e.g., mapping of
constructs on signals), triangulation, and user identification. With this concise set of directives
for future research in affective computing, I will present important conclusions drawn on my
experiences throughout almost a decade of research. I hope that these guidelines may help in
the further maturation of the field.

This chapter is an extended version of the fifth and sixth section of:

Broek, E. L. van den, Janssen, J.H., Zwaag, M.D. van der, Westerink, J.H.D.M., & Healey, J.A.

Affective Signal Processing (ASP): A user manual. [in preparation]

which already appeared partially as:

Broek, E.L. van den et al. (2009/2010/2011). Prerequisites for Affective Signal Processing

(ASP) - Parts I-V. In A. Fred, J. Filipe, and H. Gamboa, Proceedings of BioSTEC 2009/2010/2011:

Proceedings of the International Joint Conference on Biomedical Engineering Systems and Technolo-

gies. January, Porto, Portugal / Valencia, Spain / Rome, Italy.



10.1 Introduction

10.1 Introduction

This monograph started with an introduction on ASP, stressed its importance for three
branches of computer science, and introduced a closed loop model as working model for
emotion-aware systems. Chapter 2 reviewed affective computing in its broadest sense and
concluded: i) affective computing lacks the required progress and ii) ASP is a promising
(covert) channel for affective computing. This initiated a quest for ASP ’s pitfalls and the
reasons for its lack of progress. In the six chapters that followed, Chapters 3-7, studies were
presented that explored various aspects of ASP. Although this vast amount of work is by no
means an exhaustive investigation of all aspects of ASP, it did reveal a range of important
results. These results have been taken together and their implications beyond those of the
specific studies have been considered. This has resulted in a set of guidelines for ASP, which
will be introduced in this chapter.

This chapter will consist of two main sections, which will address the two components
of the signal processing + pattern recognition pipeline that forms the core of closed loop
systems, as was denoted in Chapter 1 (see Figure 1.1). For both components, guidelines will
be provided with the aim to bring ASP from research to practice. The chapter will close with
a brief conclusion.

10.2 Signal processing guidelines

Signal processing is the first essential phase of the signal processing + pattern recognition
pipeline, as was already denoted in Section 1.5 (see also Figure 1.2). This section identifies
four issues that should be considered in Affective Signal Processing (ASP), namely: physi-
cal sensing characteristics, temporal construction (including: intertwined psychological and
physiological processes and time windows), normalization, and context. If the guidelines
are met, high quality source signals can be recorded and proper feature extraction can be
applied.

10.2.1 Physical sensing characteristics

In this section, we will discuss the implications of the physical sensing characteristics of
sensors and the environment for ASP. There are a number of different sensors [103]. For
respiration measurements, a gauge band can be placed around the chest. Thermistor sensors
placed on the surface of the skin can be used to measure skin temperature [346]. HR can
be measured through surface electrodes (ECG) or through a photoplethysmography. Skin
conductance and muscle tension (EMG) are also measured through surface electrodes.
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The choice of surface electrodes depends on the kind of measurement, the aim of the
measurement, and the application in which it is to be used (e.g., see [666]). For example,
in the lab one opts for the most sensitive and reliable electrodes, which are wet electrodes
that use a gel for better conductivity. However, for wearable affective measurements dry
electrodes are a better option, as these are more practical and easier to attach and incorpo-
rate into devices. The kind of gel used with wet electrodes depends on the measurement
type. For skin conductance measurements, a saltless gel should be used as salt changes the
composition of the skin which influences the measurement [62, 234]. For EMG and ECG,
gels with high electrical conductance are better, hence they often include salt.

The location of the surface electrodes is important as improper placing can cause noise
in the signal [85, 294, 376, 449] but the size of the electrodes can also be of influence [456].
However, in the case of ASP, the wearable devices and setting will put constraints on the
location and size of the sensors. For example, the upper phalanx of the finger tips con-
ventionally used for skin conductance measurements cannot be used while driving a car
[269, 272, 329, 330, 474]. Other parts of the hands or the sole of the foot might be used in-
stead [62, 163]. However, the number of sweat glands differs significantly between these
and other possible positions of measurement; see also Table 10.1. Skin temperature can also
be measured on the foot instead of the hand. However, similar as with EDA measurements,

Table 10.1: Distribution of eccrine (sweat) glands in man, adopted from [561, Chapter 6].
location # glands Location # glands
palms 2,736 dorsa of the feet 924
soles 2,685 thigh and leg, medical aspect 576
dorsa of hands 1,490 thigh, lateral aspect 554
forehead 1,258 cheek 548
chest and abdomen 1,136 nape of neck 417
forearm, flexor aspect 1,123 back and buttocks 417
forearm, extensor aspect 1,093

Table 10.2: Results of a representative study on the influence of climate on the number of
sweat glands, adopted from [561, Chapter 6].

subjects # subjects age # sweat glands (×1, 000)
min max mean

Japanese in Japan 12 13–16 1,069 1,991 1,443 ± 52
Japanese migrated to the tropics 6 38–58 1,639 2,137 1,886 ± 59
Japanese born in tropics 4 14–35 1,839 2,603 2,168 ± 11
Ainu∗ 11 6–35 1,781 2,756 2,282 ± 66
Russians 10 17–42 2,642 2,982 2,800 ± 23
Filipino 15 9–25 2,589 4,026 2,961 ± 61
∗ The Ainu is a Japanese aboriginal tribe living in the cold northern parts of Japan.
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the location is of influence on the measurements [561, Chapters 10]; see also Table 10.3. The
thermal circulation index (CI), as provided in Table 10.3, can be used to compare measure-
ments done on distinct locations. For HR, oxygen saturation, and HRV, instead of using
electrodes on the chest (ECG) one can use a photoplethysmographic sensor on the ear, hand,
or foot [19]. The last decade several photoplethysmographic sensors have been introduced
that have shown to be reliable, where this was not yet the case with photoplethysmographic
sensors introduced in the previous century [19].

The physical sensing characteristics of the environment such as humidity and temper-
ature also play an important role. This predominantly influences the skin conductance and
temperature measurements [561, Chapters 6 and 10]. Moreover, people’s number of sweat
glands depends heavily on the climate people are living in; see Table 10.2. These points
are of special interest for longer periods of continuous measurement and is also different in
medical experiments, which require a controlled lab situation in which the humidity and
temperature of the room can be kept constant. Hence, it might be worthwhile to enhance
unobtrusive sensor platforms with environmental sensors. Another way of dealing with the
issues of different sensor positions and changes in environmental temperature and humidity
can be to standardize the measurements using z-scores for each session. During continuous
longer term measurements one can use a sliding time window for a set period (e.g., one or
two hours), which is used for standardization.

To conclude, due to the great number of differences in the aim of physiological mea-
surements, different sensor positions, and different or even changing environmental con-
ditions, one should always carefully puzzle to find the best combination of electrode types

Table 10.3: Results of a representative study on skin temperature (in oC) and thermal circu-
lation index (CI) (i.e., CI = ∆(skin,air) / ∆(interior,skin)) in relation to several body regions,
adopted from [561, Chapter 10] Room temperature was 22.8 oC and rectal temperature (as
reference temperature) was 37.25oC.

body region temperature (in oC) CI
skin ∆(skin,air) ∆(interior,skin)

forehead 33.40 10.60 3.85 2.75
clavicle 33.60 10.80 3.65 2.96
over breast 32.75 9.95 4.50 2.21
1 inch over umbilicus 34.20 11.40 3.05 3.75
over apex of heart 33.30 10.50 3.95 2.67
lumbar region 33.30 10.50 3.95 2.67
arm, biceps 32.85 10.05 4.40 2.28
palm of the hand 32.85 10.05 4.40 2.28
kneecap 32.35 9.55 4.90 1.95
calf of leg 32.20 9.40 5.05 1.86
sole of foot 30.20 7.40 7.05 1.05
big toe 30.95 8.15 6.30 1.29
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Table 10.4: Eight methods to normalize affective signals. x denotes the (original) signal and
min and max are its (estimated) minimum and the maximum. µB, minB , maxB , and σB are
respectively the mean, minimum, maximum, and standard deviation of the baseline.

1 log xi + 1 or
√

xi To correct for positively skewed and leptokurtotic signals.
2 xi − µB A standard correction, known as delta or reaction scores.
3 xi − min A useful alternative to the first method, when there is no base-

line measurement (and a lot of variance in the signal).
4 xi − µB/σB Known as standardization or the z-correction. It significantly

reduces the variance in the signal. Also used as range correc-
tion.

5 xi − µB/µB Standard range correction.
6 xi − min / max−min Correction for individual differences in physiology. Sensitive

to outliers.
7 xi/ max Used for Skin conductance responses features. In practice, the

max is determined by frightening a subject at the start.
8 (xi − µB/µB) × 100 Percentage change, used as range correction.

Sources of information: 1: [85, Chapter 7; p. 165], 2: [418], 3 and 7: [62], 4 [62, 77],
6: [430, 449], and 8: [196] (see also [206]).

and locations. Furthermore, standardizing the signals will also reduce a lot of the otherwise
unexplained variance in the signal; for example, normalization techniques, see Table 10.4. In
the end, this will provide cleaner signals to the machine learning algorithms and will lead
to a much more successful ASP.

10.2.2 Temporal construction

There are many temporal aspects in ASP that should be taken into account, as will be
discussed here. In order of appearance, we will discuss: habituation, Law of Initial Values
(LIV), sources of delay in measurement, and time window selection [585, Chapter 23].

Humans are not linear time (translation or shift) invariant systems [62], they have a
tendency for habituation [26, 198]. This increases the complexity of ASP substantially, since
most signal processing techniques rely on that assumption. In general, every time a stimulus
is perceived one’s reaction to it will decrease. With large delays between the stimuli, one
recovers from the habituation effect. When it becomes possible to track emotional events,
this information can be used to predict how strong the effect of a similar stimulus will be.

Physiological activity tends to move to a stable neutral state. This principle is known
as the LIV [721]; see also [626, Chapter 5] and [144, Chapter 12]. For example, when you
perceive a scary stimulus when your heart rate is at 80 it might increase by 15 beats per
minute; in contrast, if your heart rate is at 160 it is unlikely to increase at all. So, the effect of a
stimulus on physiology depends on the physiological level before stimulus onset, which has
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been shown to be a linear relationship that can be modeled by linear regression: determine a
regression line (which is different per feature and person) and, subsequently, use it to correct
each value by computing its residualized value [316, 546, 721].

There are many challenges in modeling the temporal aspects of emotion, among which
the following triplet:

1. Affective signals are typically derived through non-invasive methods to determine
changes in physiology (cf. [212, 213]) and, as such, are indirect measures. Hence, a
delay between the actual change in emotional state and the recorded change in signal
has to be taken into account.

2. The annotation challenge:

(a) How to determine when an emotion begins and when it ends? and

(b) A delay in reporting the feeling by the subject, an issue of postdictive validity (see
Section 10.3.1). In practice, time window selection can be done empirically, either
manually or automatically; for example, by finding the nearest significant local
minima or making assumptions about the start time and duration of the emotion.
A solution would be to ask subjects themselves to define the window of interest.
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Figure 10.1: Four hours ambulatory EDA recordings, with its minimum and mean baseline.
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3. The so-called sensor fusion problem: one has to determine how to window individual
signals within the emotional event since different signals have different latencies; see
also Table 1.1.

It should be noted that, in general, biosignal features that are calculated over time win-
dows with different lengths cannot be compared with each other (e.g., see Figures 10.1–10.3).
Therefore, it is important to keep the window length constant, while processing an event.

Considerations that need to be taken into account when selecting time windows in-
clude the following three:

1. The psychological construct studied, as different psychological processes develop over
different time scales. On the one hand, emotions lead to very short and fast phasic
changes and, thus, require short time windows (i.e., in the order of seconds; cf. Fig-
ures 10.1–10.3). On the other hand, changes in mood are more gradual and tonic and,
so, require broader time windows (e.g., hours or at least minutes; see Figures 10.1–
10.4). Moreover, some changes can hold for only a brief moment, while others can
even be permanent.

2. The type of signal being measured; see also Table 1.1. At least the minimum response
time of the signal should be taken as time window but preferably longer. In general,
the longer the duration interval, the more reliable the data becomes; and

3. The context (see also Section 10.2.4). Discontinuous signals (e.g., heart rate variability)
require longer time windows than continuous signals (e.g., skin conductance and skin
temperature). In ambulatory settings, this distinction becomes even more important as
discontinuous signals are prone to disturbances and, hence, shorter time windows are
unreliable (cf. 1 and 2 minutes for HF and LF in controlled and 5 minutes in ambula-
tory settings is advised [641]), where this issue is less pregnant for continuous signals;
see also Table 1.1.

The results shown in Table 10.5 that accompany Figures 10.2 and 10.3 illustrate the sig-
nificant impact the choice of time window length can have on calculating features, especially
those related to signal shape. This illustrations shows the impact time windows can have on
ASP and, hence, the importance of taking into account the considerations presented here.

Statistic Time windows
(in seconds)
5 10 60

mean 3314 3312 3083
SD 19 23 217
slope 43 -69 697

Table 10.5: Standard statistics on three time windows of
an EDA signal, as presented in Figure 10.3. These three
time windows are close-ups of the signal presented in
Figure 10.2, which in turn is a fragment of the signal
presented in Figure 10.1.
Note. SD denotes Standard Deviation.

174



10.2 Signal processing guidelines

10.2.3 Normalization

Finding an appropriate normalization method is both important and difficult for sensors
whose readings depend on factors that can easily change on a daily basis, such as sensor
placement, humidity, temperature, and the use of contact gel, as was already noted in Sec-
tion 10.2.1. Physiological signals can be normalized using:

• Baseline corrections: applied when comparing or generalizing multiple measurements
from one individual across a variety of tasks [418].

• Range corrections: reduce the inter individual variance by a transformation that sets
each signal value to a proportion of the intra individual range [62].

Probably the most frequently used and powerful correction for continuous biosignals
(e.g., EDA and skin temperature) is standardization (method 4 in Table 10.4) [62]. It corrects
not only for the baseline level but also for the variation in the signal, making it robust.

Other correction methods are tailored to specific features; for example, the amplitude
of skin conductance responses is often corrected by dividing by the maximum amplitude.
An alternative is the use of delta, or reaction scores, (Table 10.4, nr. 2), which is suitable
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Figure 10.2: A 30 minute time window of an EDA signal, which is a part near the end of
the signal presented in Figure 10.1. Three close-ups around the event near 3.3 hours are
presented in Figure 10.3.
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and reliable for absolute level comparisons [418]. If no baseline measurements are available,
method nr. 3 of Table 10.4 is a good alternative.

Normalization methods 4 − 8 in Table 10.4 are often used as range corrections. In gen-
eral, they provide a stronger normalization than baseline corrections 2 and 3 in Table 10.4.
As such, range corrections can also be used to compensate for greater variability in signals.
Typical measures that are subject to large inter individual differences are skin conductance
(tonic levels vary per person: 2 − 16µS), skin temperature, and pulse volume.

Selecting a normalization method is difficult since each has different merits; see Ta-
ble 10.4. Taking the minimum baseline is more equivalent to taking the resting EDA that
would normally be used in a laboratory experiment. This is the best method if a consistent
minimum seems apparent in all data being combined. The problem is that for each data seg-
ment, a minimum must be apparent. It is straightforward to eliminate point outliers such as
those at 3.7 hours and 3.9 hours in Figure 10.2 and find a more robust minimum baseline.

With choosing an appropriate normalization method, the selection of a period (i.e.,
a time window) over which to calculate the parameters of the selection method (the nor-
malization period) is also of importance, as was depicted in Section 10.2.2. As an example,
Figures 10.2 and 10.4 show several hours of an ambulatory EDA signal, along with two
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Figure 10.3: Three close-ups around the event presented in Figure 10.2. The statistics accom-
panying the three close-ups can be found in Table 10.5.
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strategies for baseline correction: a minimum value baseline and a mean baseline (methods
2 and 3 in Table 10.4). Once the baseline is removed, the signal becomes a new base (or zero)
and the original value is lost.

For short term experiments, a single baseline period is usually sufficient. However,
when monitoring continuously, the baseline may have to be re-evaluated with greater fre-
quency. The challenge here is to find a good strategy for dividing the signal into segments
over which the baseline should be re-calculated. A simple solution is to use a sliding win-
dow; for example, where the last 30 minutes are taken into account. However, Figure 10.4
shows an obvious problem with this: the problem of lost data (e.g., sensor which has fallen
off); see also Section 10.2.2. In sum, at this moment the most useful correction methods
for each individual physiological measurement should still be specified. The most useful
technique depends on the aim of the study.

10.2.4 Context

“When humans talk with humans, they are able to use implicit situational information, or context,
to increase the conversational bandwidth. Unfortunately, this ability to convey ideas does not trans-
fer well to humans interacting with computers. In traditional interactive computing, users have an
impoverished mechanism for providing input to computers. Consequently, computers are not cur-
rently enabled to take full advantage of the context of the human-computer dialogue. By improving
the computer’s access to context, we increase the richness of communication in human-computer in-
teraction and make it possible to produce more useful computational services.” A. K. Dey [158, p.
4] If anything, the experience and transmission of emotions via biosignals depends heavily
on context [585, Chapter 23]. However, as is stated in the quote above, capturing context
is easier said than done [6, 325, 668, 669]. Handling context is even considered to be one
of AI’s traditional struggles [649, 675]. Perhaps this can be attributed partly to the fact that
in the vast majority of cases, research on context aware computing has taken a technology-
centered perspective as opposed to a human-centered perspective [383]. This technology
push has been fruitful though, among many other techniques, sensor networks, body area
networks, GPS, and RFID have been developed. Their use can be considered as a first step
towards context aware computing. However, not only is the gathering challenging but pro-
cessing (e.g., feature extraction) and interpretation are also hard [21, 676, 699].

Potentially, context aware computing can aid ASP significantly. Biosensors can be em-
bedded in jewelery (e.g., a ring or necklace), in consumer electronics (e.g., a cell phone or
music player), or otherwise as wearables (e.g., embedded in cloths or as part of a body area
network). Connected to (more powerful) processing units they can record, tag, and interpret
events [158] and, in parallel, tap into our emotional reactions through our physiological re-
sponses. However, affective biosignals are influenced by (the interaction between) a variety
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Figure 10.4: A typical sample of lost data with an EDA signal, as frequently occurs in real-
world recordings.

of factors besides affect [78], as has been illustrated throughout this monograph.

To bring the theory just presented into practice, we present an example on the level
of activity, as a factor of context. Figure 2.1 illustrates how pervasive motion artifacts can
be for ASP in real world settings. Both heart rate and electrodermal activity are elevated
during the period of high activity (i.e., from 27 to 30 minutes), as automatically determined
through accelerometers. However, as the signal graphs show, the changes in heart rate fol-
low changes in activity much more rapidly than electrodermal activity does, both in terms
of onset and, especially, in terms of recovery. For level 4 (walking) in Figure 2.1, it even
seems that the physical effects are so dominant that ASP should not be attempted. In con-
trast, with levels 1 (lying down), 2 (sitting), and 3 (standing/strolling) this is possible. So,
physical activity can easily cast a shadow over affective (bio)signals.

10.3 Pattern recognition guidelines

As is illustrated in Table 2.4, a plethora of feature selection algorithms and classifiers has
been applied in affective computing studies. Much has been said on the pros and cons of
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the methods applied, each article is accompanied with its own reasoning on it or simply
ignores possible alternatives. For example, Picard and colleagues [268, 271, 524, 703] posed
that sequential floating forward search (SFFS) was superior to ‘standard’ stepwise feature
selection (SFS). This claim was questioned in follow-up research by others and recently re-
jected by Way, Sahiner, Hadjiiski, and Chan [708], who concluded: “PCA was comparable
to or better than SFS and SFFS for LDA at small samples sizes” (p. 907) and “In general, the
SFFS method was comparable to the SFS method . . . ” (p. 907). However, it should be noted
that Way et al. [708] concerned a(n excellent) simulation study not in the domain of affec-
tive computing. Nevertheless, it illustrates the still ongoing debate on pattern recognition
and machine learning methods. In the choice of these methods, pragmatic considerations,
personal preferences, science’s current fashion often seem to be dominant factors of choice.
Moreover, several excellent handbooks are available on pattern recognition and machine
learning [48, 170, 457, 648, 689] as well as a range of excellent tutorial and survey articles.
Therefore, we will refrain from providing an overview of these techniques and provide gen-
eral but crucial guidelines for the classification of affective signals, which are often violated.
We pose that the triplet of guidelines can significantly improve ASP.

10.3.1 Validation

In the pursuit of a method to trigger emotions in a more or less controlled manner, a range
of methods have been applied: actors, images (IAPS) (see Chapter 5), sounds (e.g., mu-
sic) [316, 681], (fragments of) movies (see Chapters 3, 4, 6, and 7), speech [677], commer-
cials [529], games (including serious gaming), agents, virtual reality [86, 474, 488, 616], re-
living of emotions (see Chapters 8 and 9), and real world experiences [269, 270, 272, 316];
see also Table 2.4. However, how can we know which of these methods actually triggered
participants’ true emotions? This is a typical concern of validity, which is a crucial issue for
ASP. For ASP purposes, validity can best be obtained through four approaches: content,
criteria-related, construct, and ecological validation, which I will discuss next.

Content validity refers to a) The agreement of experts on the domain of interest (e.g.,
limited to a specific application or group of people, such as twins [427–429]); b) The degree
to which a feature (or its parameters) of a given signal represents a construct; and c) The
degree to which a set of features (or their parameters) of a given set of signals adequately
represents all facets of the domain. For instance, employing only skin conductance level
(SCL) for ASP will lead to a weak content validity when trying to measure emotion, as
SCL is known to relate to the arousal component of an emotion, but not to the valence
component. However, when trying to measure only emotional arousal, measuring only SCL
may form strong content validity.

Criteria-related validity handles the quality of the translation from the preferred mea-
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surement (e.g., ECG) to an alternative (e.g., BVP), rather than to what extent the measure-
ment represents a construct (e.g., a dimension of emotion space). Emotions are preferably
measured at the moment they occur; however, measurements before (predictive) or after
(postdictive) the particular event are sometimes more feasible (e.g., through subjective ques-
tionnaires). The quality of these translations are referred to as respectively predictive or
postdictive validity. A third form of criteria-related validity is concurrent validity: a metric
for the reliability of measurements (e.g., EDA recording on the foot sole) applied in relation
to the preferred standard (e.g., EDA recording on the hand palm). For instance, the more
affective states are discriminated the higher the concurrent validity.

A construct validation process aims to develop a nomological network (i.e., a ground
truth) or an ontology or semantic network, built around the construct of interest. Such a net-
work requires theoretically grounded, observable, operational definitions of all constructs
and the relations between them. Such a network aims to provide a verifiable theoretical
framework. The lack of such a network is one of the most pregnant problems ASP is coping
with. This problem has been assessed in Chapters 5 and 6 that applied both the valence-
arousal model and basic emotion categories as representations for affective states. A fre-
quently occurring mistake is that emotions are denoted, where moods (i.e., longer object-
unrelated affective states with very different physiology) are meant. This is very relevant
for ASP, as it is known that moods are accompanied by very different physiological patterns
than emotions are [223].

Ecological validity refers to the influence of the context on measurements. We identify
two issues: 1) Natural affective events are sparse, which makes it hard to let participants
cycle through a range of affective states in a limited time frame; and 2) The affective signals
that occur are easily contaminated by contextual factors; so, using a context similar to that
of the intended ASP application for initial learning is of vital importance. Although un-
derstandable from a measurement-feasibility perspective, emotion measurements are often
taken in controlled laboratory settings. This makes results poorly generalizable to real-world
applications.

The concern of validity touches upon the essence of research. However, it is still fre-
quently ignored in branches of computer science. With this guideline, I hope to have pro-
vided some workable definitions of four types of validity that are crucial for ASP. These four
types of validity should be respected, both when conducting research and when developing
applications.

10.3.2 Triangulation

Triangulation is the strategy of combining multiple data sources, investigators, method-
ological approaches, theoretical perspectives, or analytical methods within the same study
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[344, 651]. This provides the methodological instruments to “separate the construct under con-
sideration from other irrelevancies in the operationalization” [273, p. 15901]. We propose to adopt
this principle of triangulation, as applied in the social sciences and human-computer interac-
tion, for ASP. Within the domain of affective computing, the constructs under investigation
are emotions and irrelevancies can be the various sources of noise, as were mentioned in
Chapter 2 and in Section 10.2.1.

Generally, five types of triangulation are distinguished [344, 651], each having their
own advantages, namely:

1. Data triangulation: Three dimensions can be distinguished in data sources: time, space
(or setting), and person (i.e., the one who obtained the recordings) [154]. Time triangu-
lation can be applied when data is collected at different times [344]; for example, as is
done by Picard et al. [524], Healey and Picard [272], and Janssen, Van den Broek, and
Westerink [316]. In general, variance in events, situations, times, places, and persons
are considered as sources of noise; however, they can also add to the study. Extrapo-
lations on multiple data sets can provide more certainty in such cases. In turn, correc-
tions can also be made to atypical data in a result set that clearly deviates from other
results [651].

2. Investigator triangulation: Multiple observers, interviewers, coders, or data analysts can
participate in the study. Agreement between these researchers, without prior discus-
sion or collaboration with one another, increases the credibility of the observations
[154]. Par excellence, this type of triangulation can be employed on including context
and unveiling events as this often includes subjective interpretations of events, see also
Section 10.2.4.

3. Methodological triangulation: This can refer to either data collection methods or research
designs [404]. The major advantage is that deficiencies and biases that stem from a
single method can be countered [651]. Multiple data sets (e.g., both qualitative and
quantitative) and signal processing techniques (e.g., in the time and spectral domain)
can be employed (see Table 2.4). Moreover, multiple feature extraction paradigms,
feature reduction algorithms, and classification schemes can be employed (again, see
Table 2.4). Further, note that methodological triangulation is also called multi-method,
mixed-method, and methods triangulation [233].

4. Theoretical triangulation: Employing multiple theoretical frameworks when examining
a phenomenon [154, 301, 396]; for example, using both a categorical (or discrete) and
a continuous (e.g., valance-arousal) model of emotion [673, 676]. See Chapters 5 and 6
for a discussion on this topic.

5. Analytical triangulation: The combination of multiple methods or classification meth-
ods to analyze data [344, 682]. As is shown in Table 2.4, this approach has already
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often been employed. For example, Picard et al. [524] and Healey and Picard [272]
combined different signals from the same modality and Kapoor, Burleson, and Pi-
card [328] and Bailenson et al. [25] combined biosignals with a vision-based approach.
Paulmann, Titone, and Pell [512] who combined speech processing and eye tracking,
which revealed that emotional prosody has a rapid impact on gaze behavior during
social information processing. This facilitates (cross) validation of data sources, as is
also described in Section 10.3.1.

In general, in well controlled research, we advise the recording of at least 3 affective
biosignals and the derivation of at least 3 features from them, for each construct under in-
vestigation. In ambulatory, real-world research much more noise will be recorded, as also
described in Chapter 2 and Section 10.2.1. To ensure that this noise can be canceled out,
we advise the recording of many more affective biosignals and also the extraction of more
features from them. As a rule of thumb for ambulatory research we advise researchers to
record as many signals possible, avoiding interference with participants’ natural behavior.
However, a disadvantage accompanies this advice, as “a ‘more is better’ mentality may result in
diluting the possible effectiveness of triangulation” [651, p. 256] Moreover, where possible, qual-
itative and subjective measures should always accompany the signals (e.g., questionnaires,
video recordings, interviews, and Likert scales); for example, see [272, 616, 677, 716].

10.3.3 User identification

Throughout the field of affective computing, there is a considerable debate on present on
generic versus personal approaches to emotion recognition. Some research groups special-
ized in affective computing have moved from general affective computing to affective com-
puting for specialized groups or individuals. In general, the identification of users has major
implications for ASP. We propose three distinct categories, from which research in affective
science could choose:

1. all: generic ASP ; see also Table 2.4 and [676, 679, 681]

2. group: tailored ASP ; for example, see [104, 188, 274, 354, 592, 627, 633]

3. individual: personalized ASP ; for example, see [40, 272, 316, 427–430, 464, 524, 624]

Although attractive from a practical point of view, the category all will probably not solve
the mysteries concerning affect. It has long been known in physiology, neurology, and psy-
chology that special cases can help in improving ASP [633]. For the categories group and
individual, the following subdivision can thus be made:

1. Specific characteristic; for example, autism [119], depression [592], and criminals ver-
sus students [274] but also baseline blood pressure, hypertensive medication, body
mass, smoking [625], and alcohol consumption [227]; see also [633] and [85, Chapter
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31; p. 732].

2. Psychological traits; for example, personality [57, 188, 354, 362, 441, 676] or empa-
thy [80, 152, 251, 612]).

3. Demographics; for example, age [314, 435, 553], sex/gender [361, 718], national-
ity [458], ethnics/race [585, Chapter 28], [56, 314, 401, 603, 627], culture [56, 239, 450,
470], socioeconomic status [239, 470], and level of education [676].

4. Activities; for example, office work [316, 681], driving a car [272, 329, 330, 474] or flying
a plane, and running [270].

This subdivision is based on current practice with ASP ; however, possibly it should be al-
tered.

So far, comparisons between research results on ASP are mostly made between results
of either individuals or groups selected to resemble the general population (cf. Table 2.4).
However, user-tailored approaches should be explored as well. In particular, experiences
with specific groups can substantially contribute to the further development of ASP, as has
been seen in other sciences (e.g., biology, psychology, and medicine).

Having said that, the question remains, how to handle this striking variety between
people. We propose three approaches that can possibly tackle these problems:

1. Hybrid classification systems [45]. Most often, such architectures incorporate both a
(logic-based) reasoning system and a pattern recognition component. To the authors
knowledge, so far, this approach has not been applied for ASP. It has, however, been
applied successfully for speech-based emotion recognition [591].

2. Multi-agent systems and multi-classifier systems [724]. Two approaches within this
field could be of interest: 1) Multi-layered architectures, where each layer determines
the possible classes to be processed or the classifiers to be chosen for the next layer and
2) An ensemble of classifiers, trained on the same or distinct biosignals and their fea-
tures. Their outputs are collected into one compound classification, often determined
through a voting scheme. For example, Atassi and Esposito (2008) [20] applied a two-
layer classification system for speaker independent classification of six emotions, For
more information on this topic, we refer to Lam and Suen [370] and Kuncheva [364].

3. Biosignal signatures. Related to schemes that are used in forensics [559] and with
functional neuroimaging (e.g., EEG, fMRI, MEG, NIRSI, SPECT, and PET) [85, Chap-
ter 2; p. 34], ASP could benefit from personalized profiles or schemes that tailor to a
generic profile of people’s unique biosignal signatures [172, 464, 726]. Moreover, this
approach could be extended to incorporate context information, as is already done
in forensics [559]. Biosignal signatures require advanced multi-modal data mining
and knowledge discovery strategies, and are related to the Picard et al.’s baseline ma-
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trix [524] (see also Chapter 7).

Each of these approaches enables processing of multi-modal data, which allows re-
searchers to incorporate a range of characteristics (e.g., context, personality, and signals pos-
sible to record) [464]. This makes them promising for ASP applications, even outside the
scope of user identification.

10.4 Conclusion

The signal processing guidelines taken together: physical sensing characteristics, tempo-
ral aspects, normalization, and context, all need to be taken into account when process-
ing affective signals. Subsequently, the affective signals need to be classified using pattern
recognition techniques. For this phase, the guidelines validation, triangulation, and user
identification should be taken into account.

The guidelines presented in this chapter were derived from the author’s research con-
ducted on ASP. Part of this research can be found in this monograph. Careful processing
of all issues mentioned in the guidelines should always be warranted as they provide the
input for the core of the closed loop model that forms the core of emotion-aware systems
(see Figure 1.1). As such, I hope that this concise set of directives will aid future research in
affective computing. With the next chapter, I will close this monograph.
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Abstract

This chapter will start with a wrap-up of what has been presented in this monograph. Its
main contribution will lie in looking back and forth in time. After an introduction, a his-
torical perspective will be taken, which will illustrate the vast amount of knowledge that is
frequently ignored in ASP research. Subsequently, I will weigh this monograph’s contribution
to emotion science’s 10 hot topics as has been recently identified [236]. After this, ASP will be
brought back to practice by introducing affective computing’s I/O. Next, three applications
that fit three disciplines of computer science will be unveiled, namely: Human-Computer In-
teraction (HCI), Artificial Intelligence (AI), and health informatics. It will be posed that the
technique is ready to bring these applications to the market. Subsequently, the pros and cons
of two possible future application areas (i.e., robot nannies and a digital human model) will
be discussed. I will finish this chapter and, hence, this monograph with a brief conclusion.

In order of appearance, this chapter includes parts of:
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vation of multimedia. European Research Consortium for Informatics and Mathematics (ERCIM)

News, No. 80 (January), 45–47;

Broek, E.L. van den (2010). Robot nannies: Future or fiction? Interaction Studies, 11(2), 274–282;

and:

Broek, E.L. van den (2010). Beyond Biometrics. Procedia Computer Science, 1(1), 2505–2513.

[invited].



11.1 Introduction

11.1 Introduction

This monograph was divided into five parts: I. a prologue, II. baseline-free ASP using
statistical moments, III. bi-modal Affective Signal Processing (ASP) that explored various
possible key factors, IV two studies towards affective computing, and V. an epilogue of
which this discussion is the second part. In addition, Appendix A provides additional back-
ground information on the statistical techniques used in this monograph.

The first part, the prologue, started with a general introduction and an introduction
on this monograph’s key concepts: affect (and emotion), affective computing, and Affec-
tive Signal Processing (ASP). Next, the closed loop model for affective computing and ASP
was introduced, which served as the working model for this monograph. Moreover, the
relevance of ASP for three branches of computer science (i.e., Human-Computer Interaction
(HCI), Artificial Intelligence (AI), and health informatics) was explained. Last, an outline of
this monograph was provided. The second and last chapter of the prologue provided a re-
view of affective computing and, more in particular, ASP. Biosignals received most attention
as this was the target modality of the monograph.

The second part of this monograph consisted of two chapters (Chapters 3 and 4) that
presented two distinct sets of analyses on the same data set. The analyses differed in their
choice of time windows. This way the impact and usage of this parameter for ASP was
explored. Dynamic real world stimuli (i.e., fragments from movies) were used to induce
emotions, instead of less ecologically valid static stimuli. The EMG of three facial muscles
was recorded. This is often done to establish a ground truth measurement. In addition, the
participants’ EDA’s were recorded. This is a robust well-documented biosignal that reveals
the level of experienced arousal experienced. Baseline-free ASP was achieved through the
use of statistical moments. The 3rd and 4th order moments (i.e., skewness and kurtosis) of
the biosignals revealed hidden signal characteristics that enabled to discriminate very well
between four emotional states with up to 62% explained variance.

The third part of this monograph also consisted of two chapters, Chapters 5 and 6. The
studies presented in these chapters only differed with respect to the stimuli used. In the
first study, Chapter 5, one of, or perhaps the reference set for affective computing was used:
IAPS images. In the second study, Chapter 6, the same set of movie fragments was used
as in Chapters 3 and 4. This enabled a comparison of static versus dynamic stimuli and,
as such, assessed their validity. Both studies employed a bi-modal ASP approach to assess
affective processes, including ECG as biosignal as well as speech. To the best of the author’s
knowledge, in this context, this combination has so far only been explored by Kim and
colleagues [336, 337, 339, 340]. Both studies also explored a range of issues important to ASP,
namely: emotion models, environment, personality traits, and demographics. Surprisingly,
some of these issues were shown to have little influence on ASP (e.g., the personality trait

187



11 Discussion

extroversion and demographics). In contrast, other issues (e.g., environment and gender)
were shown to be of influence. Up to 90% of variance in the data was explained. Moreover,
with both studies more support was found for the valence-arousal model than for basic
emotions.

The fourth part consisted of three chapters that presented work bringing us further
towards affective computing. The first chapter, Chapter 7, presented the execution of the
complete signal processing + pattern recognition processing pipeline, see also Section 1.5. In
the quest for an optimal processing pipeline, several signal processing aspects and classifica-
tion methods were explored. The second chapter, Chapter 8, assessed the use of the speech
signal as affective signal. The study’s aim was to explore the feasibility of a speech-based
Computer-Aided Diagnosis (CAD) for mental health care. The study consisted of two ex-
periments, one well controlled and one open, in which patients with a post-traumatic stress
disorder (PTSD) participated. For both experiments, a model was developed that explained
a significant amount of variance. In the third chapter, Chapter 9, the data of Chapter 8 was
used to execute the complete signal processing + pattern recognition processing pipeline
(cf. Chapter 7). As such, this chapter explores the feasibility of the envisioned ASP -based
CAD for mental health care. I concluded that both from a clinical and from an engineering
point of view, affective computing seems to be within reach.

The fifth part, the epilogue, consists of two parts: the discussion you are currently
reading and a set of guidelines for ASP, which was presented in the previous chapter. This
guideline chapter presented the lessons learned while working on the research reported
in this monograph. These guidelines indicated possible problems, presented solutions for
them, and provided research directives for affective computing. As such, this was perhaps
the most important chapter of this monograph.

The remainder of this discussion will look back and forth in time. In Section 11.2, I will
stress that we should go back to the basics and learn from the field’s research history. The
reason for this is simple: energy spent on reinvention is wasted. In Sections 11.5 and 11.6,
I will go from theory to practice and present some applications that could be realized with
the current state-of-art ASP as presented in this monograph. Additionally, I will touch upon
some of the ethical aspects of these applications. I will end this monograph with a brief
conclusion in Section 11.7.

11.2 Historical reflection

Although a lot of knowledge on emotions has been gained over the last centuries [22, Chap-
ter 1], researchers tend to ignore this to a great extent and to stick to some relatively recent
theories; for example, the valence and arousal model or the approach avoidance model.
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This holds in particular for ASP and affective computing, where an engineering approach
is dominant and a theoretical framework is considered of lesser importance [680]. Conse-
quently, for most engineering approaches, the valence-arousal model is applied as a default
option, without considering other possibilities. Nonetheless, a higher awareness of other
theories can heighten the understanding and, with that, the success of ASP.

It is far beyond the scope of this monograph to provide a complete overview of all
of the literature relevant for ASP and affective affective computing. For such an overview,
I refer to the various handbooks and review papers on emotions, affective sciences, and
affective neuroscience [16, 52, 72, 139, 144, 208, 209, 238, 396, 492, 535, 573, 582, 631]. In this
section, I will touch upon some of the major works on emotion research which originate
from medicine, biology, physiology, and psychology.

Let us start with one of the earliest works on biosignals: De l’Électricité du corps humain
by M. l’Abbé Bertholon (1780) [366], who was the first who described human biosignals.
Nearly a century later Darwin (1872) published his book The expression of emotions in man
and animals [139]. Subsequently, independently of each other, William James and C.G. Lange
revealed their theories on emotions, which were remarkably similar [139]. Consequently,
their theories have been merged and were baptized the James-Lange theory.

In a nutshell, the James-Lange theory argues that the perception of our own biosignals
is the emotion. Consequently, no emotions can be experienced without these biosignals.
Two decades after the publication of James’ theory, this was seriously challenged by Can-
non [90, 91] and Bard [29, 30]. They emphasized the role of subcortical structures (e.g., the
thalamus, the hypothalamus, and the amygdala) in experiencing emotions. Their rebuttal
on the James-Lange theory was expressed in a theory that was founded on five notions:

1. Compared to a normal situation, experienced emotions are similar when biosignals are
omitted; e.g., as with the transection of the spinal cord and vagus nerve.

2. Similar biosignals emerge with all emotions. So, these signals cannot cause distinct
emotions.

3. The body’s internal organs have fewer sensory nerves than other structures. Hence,
people are unaware of their possible biosignals.

4. Generally, biosignals have a long latency period, compared to the time emotional re-
sponses are expressed.

5. Drugs that trigger the emergence of biosignals do not necessarily trigger emotions in
parallel.

I will now address each of Cannon’s notions from the perspective of ASP. It is important to
consider these notions for current ASP, as will become apparent.

To the author’s knowledge, the first case that illustrated both theories’ weaknesses was
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that of a patient with a lesion, as denoted in Cannon’s first notion. This patient reported:
“Sometimes I act angry when I see some injustice. I yell and cuss and raise hell, because if you don’t
do it sometimes, I learned people will take advantage of you, but it just doesn’t have the heat to it that
it used to. It’s a mental kind of anger.” [285, p. 151]. On the one hand, this case seems to support
the James-Lange theory since the lesion disturbed the patient’s biosignals and, in parallel,
his emotions have diminished or are even absent. On the other hand, the patient does still
report emotions, although of a different kind. If biosignals are the emotion how can this be
explained then? Can this be attributed to higher level cognition, to reasoning only? If not,
this can be considered as support for the Cannon-Bard theory. More than anything else this
case once more illustrates the complexity of affective processes as well as the need for user
identification, in particular research on special cases (see also Section 10.3.3).

The second notion of the Cannon-Bard theory strikes the essence of ASP. It would im-
ply that the quest of affective computing is doomed to fail. According to Cannon-Bard,
ASP is of no use since there are no unique sets of biosignals that map to distinct emotions.
Luckily, nowadays, this statement is judged as coarse [139]. However, it is generally ac-
knowledged that it is very hard to apply ASP successfully [52]. So, to some extent Cannon
has been right.

It was confirmed that the number of sensory nerves differs in distinct structures in
human bodies (Cannon’s notion 3). So, indeed people’s physiological structures determine
their internal variations to emotional sensitivity. To make ASP even more challenging, there
are cross-cultural and ethnic differences in people’s patterns of biosignals, as was already
shown by Sternbach and Tursky [627, 660] and confirmed repeatedly [585, Chapter 28], [556,
557, 603]. Once more this stresses the need for user identification, as is one of the guidelines
proposed in this monograph (see Section 10.3.3).

The fourth notion concerns the latency period of biosignals, which Cannon denoted as
being ‘long’. Indeed a response time is present with biosignals, which one could denote as
being long. Moreover, it varies considerably between the several biosignals used with ASP ;
see also Table 1.1 in Chapter 1. The former is a problem, although in most cases a work
around is, to some extent, possible. The latter is possibly even more important to take into
account, when conducting ASP. Regrettably, this is seldom done. This problem has been
addressed as temporal construction in Section 10.2.2.

The fifth and last notion of Cannon is one that has not been addressed so far. It goes
beyond biosignals since it concerns the neurochemical aspects of emotions. Although this
component of human physiology can indeed have a significant influence on experienced
emotions, this falls far beyond the scope of this monograph.

It should be noted that the current general opinion among neuroscientists is that the
truth lies somewhere in between the theories of James-Lange and Cannon-Bard [139], as
was first suggested by Schachter and Singer [575]. However, the various relations between
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Cannon’s notions and the set of guidelines presented in Chapter 10, illustrate that these
notions, although a century old, are still of interest for current ASP. Next, I will take an
opposite perspective, not a historical but a state-of-the art perspective, founded on Gross’
top 10 of hot topics on emotion research [236, p. 215].

11.3 Hot topics: On the value of this monograph

In this section, I will reflect on both the contributions of this monograph to emotions research
and the lagoons it has left unexplored. Recently, in the journal Emotion Review, James J. Gross
summarized his specific top 10 of hot topics on emotion research [236, p. 215]. Gross’ hot
topics (indicated in italics) provide an excellent resource for a structured reflection on this
monograph.

1. Investigating the antecedents of emotions, moods, and other affective processes.
Detailed analyses on antecedents of affect have been conducted in Chapter 4. The re-
sults illustrated that biosignals are indeed sensitive, reliable, and discriminating with
respect to affective processes. Chapters 8 and 9 presented two studies that employed
storytelling and reliving to elicit emotions in PTSD patients. The results revealed dif-
ferent patterns in affective responses, which can be attributed both to the method of
elicitation and to the antecedents present in both studies.

2. Developing new tools for analyzing specific emotion-response components, as well as cross-
component coherence.
A broad range of techniques and tools have been employed throughout this mono-
graph. Appendix A provides a concise overview of the mathematical background
on the statistical and machine learning techniques employed. Chapters 3 and 4 in-
troduced statistical moments, in particular skewness and kurtosis, as new features of
biosignals that enable the discrimination between emotions. Chapters 5 and 6 explored
the extremely rare combination of speech and the biosignal ECG to assess affective
states. It proved to be a powerful combination.

3. Examining bidirectional relations among emotional and cognitive processes ranging from sen-
sation and perception through judgment and decision making to memory.
Throughout this monograph this issue has been mentioned several times but has not
been an explicit topic of research. Instead, the studies reported in this monograph
aimed to isolate affect, as much as possible, and ignored its interaction with cogni-
tive processes, which are very hard to control in ambulatory real-world practice. This
monograph treated this issue as a source of noise that the signal processing + pattern
recognition pipeline had to cope with.
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4. Describing the functions of emotion-related processes in everyday life.
This quest begs for ethnography [150], which is hardly employed in affective com-
puting. Chapters 8 and 9 described research conducted on people who suffer from a
severe Post Traumatic Stress Disorder (PTSD), which illustrates the impact the distur-
bance of emotion-related processes on everyday life can have. However, what mecha-
nisms lay at the foundation of mental disorders (e.g., PTSD) remains largely unknown.

5. Assessing patterns of stability and change in emotion and emotion regulation over the lifespan,
from childhood to older age.
Such an endeavor requires longitudinal research. This is often conducted in tradi-
tional health care. However, in the context of emotion research longitudinal research
is rare [416, 417]. This is a typical concern of bringing research from lab to life [674],
which needs to be considered when bringing ASP technology into our everyday
lives [674]; see also Chapter 4.

6. Examining instructed and spontaneous emotion regulation.
This topic has been addressed in Chapters 8 and 9. The instructions and tasks the
participating patients received assured spontaneous bursts of emotion and illustrated
the lack of regulation of them. However, as Gross [236] implies, such studies are indeed
(too) rare and should be encouraged.

7. Analyzing individual differences in emotion-related processes, with an eye to genetic and epi-
genetic factors.
Genetic and epigenetic factors have not been a topic of research in this monograph. In-
dividual differences, however, have been taken into account. Chapters 3, 4, and 7 were
devoted to baseline-free ASP. Their results suggested the need for individualization.
The follow-up studies presented in Chapters 5–6 indeed unveiled individual differ-
ences (i.e., environment, the personality trait neuroticism, and gender). Additionally,
Section 10.3.3 denoted many more factors of importance.

8. Exploring cultural differences and similarities in emotion-related processes.
Throughout the literature, culture has been shown to be a factor of influence [56, 239,
450, 470], as was also stated in Chapter 10. However, the factor culture has not been a
core topic of research in this monograph.

9. Exploring conceptual and empirical relations between emotion and emotion regulation, on the
one hand, and psychological health outcomes on the other.
Health and emotion regulation are in constant interaction; consequently, they are im-
possible to untangle; see also Section 1.6. Therefore, health informatics was identified
as one of the disciplines of computer science for which ASP is of the utmost impor-
tance. Moreover, this was the reason to conduct the two studies reported in Chapters 8
and 9. These studies unveiled how speech can be used for Computer-Aided Diagnosis
(CAD) for mental health care.
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10. Assessing the impact of emotion and emotion regulation processes on physical health outcomes.
In Chapter 1 it was noted that emotions influence our cardiovascular system and, con-
sequently, can even shorten or prolong our life. This monograph did, however, not
assess the impact of emotions on physical health.

Taken together, throughout this monograph most of Gross’ 10 hot topics [236, p. 215] have
been addressed, at least to some extent. However, for most topics, it is evident that a sig-
nificant body of follow-up research is required to unravel the topics in more detail. Never-
theless, in sharp contrast to Solomon’s and Russell’s concerns but in line with Gross [236], I
would like to say “future’s so bright, I gotta wear shades” [236, p. 212].

Perhaps more than anything else, this assessment of the current monograph illustrated
its relevance and provided the necessary additional reflection upon which I conclude with
Gross’ words: “This is more than enough work to keep all of us busy who are interested in emotion,
so don those sunglasses and let’s get to work!” [236, p. 215]. Next, we will outline how to do
this; however, from another perspective, a computer science perspective.

11.4 Impressions / expressions: Affective Computing’s I/O

In the introduction of this monograph, I already stated that at a first glance, computer sci-
ence and affective sciences seem to be worlds apart; however, emotions and computers
have become entangled and, in time, will inevitably embrace each other. Computer sci-
ence and practice employs input/output (I/O) operations to characterize its processes. This
notion can also be fruitfully utilized for affective computing and ASP, as I will illustrate here
(cf. [210]).

Table 11.1 shows a matrix that provides a characterization of machinery using, what
could be, standard I/O. Machinery without any I/O (i.e., –/–) at all is of no use. In constrast,
machinery without either input (i.e., I ) or output (i.e., O ) are common practice. However,
most of us will assume both input and output (i.e., I/O ), at least to a certain extent, with
most of our machinery. For example, take our standard (office) PC with its output (i.e., at
least a video (the screen) and audio) and its input (i.e., at least a keyboard and a point-
ing device). Emerging branches of science and engineering such as AI, AmI, and affective
computing, however, aim to redecorate this traditional landscape and provide intuitive I/O
handling. In the case of affective computing, what does this imply?

Computer science’s notion of I/O operations can also be utilized to divide affective
computing into four categories. In terms of affective computing, the output (O ) denotes the
expression of affect (or emotions) and the input (I ) denotes the perception, impression, or
recognition of affect. This division is adapted from the four cases, as they were identified by
Rosalind W. Picard’s in her thought-paper, which presented her initial thinking on affective
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O
no yes

I no –/– I/–
yes –/O I/O

Table 11.1: A description of the four categories of affective com-
puting in terms of computer science’s input/output (I/O ) op-
erations. In terms of affective computing, I/O denotes the ex-
pression (O ) and the perception, impression, or recognition (I )
of affect. This division is adapted from the four cases identified
by Rosalind W. Picard [520].

computing [520]. Entities without any affective I/O (i.e., –/–), such as traditional machin-
ery, can be very useful in all situations where emotions hinder instead of help. Entities with
only affective O could for example be avatars (e.g., characters in games), consumer prod-
ucts (e.g., a sports car), toys for children, and our TV (see also Section 11.5.1). However, such
entities would not know what affective state its user is in and, hence, what affect to show as
they would lack the affective I for it. So, as its name, emotion-aware systems, already gives
away, a requirement for such systems is affective I.

Throughout this monograph, I have focussed on the affective I that is the percept,
impression, or recognition of affect. It has been shown to be complex and promising, in
parallel; however, Chapter 10 provided a set of prerequisites ASP research and development
can hold on to. Following these guidelines, successful ASP can be employed. Only affective
I is possible. In such cases, the affective I alters other processes (e.g., scheduling breaks
for pilots) and no affective O is given but another type of output closes the system (cf.
Section 1.5 and see Section 11.5.2). In case of affective I/O, the affective O can follow the
affective I immediately or with a (fixed or varying) delay. The affective O can also take
various forms, as was already denoted in Section 1.6. Moreover, the person who provides
the affective I is not necessarily the person who receives the affective O (see Section 11.5.3).

The theoretical framework concerning affective processes is a topic of continuous de-
bate, as was already argued in Section 1.2. Consequently, an accurate interpretation of af-
fective I and, subsequently, an appropriate affective O is hard to establish. In particular
in real-world settings, where several sources of noise will disturb the closed-loop (see Sec-
tion 1.5), this will be a challenging endeavor. So, currently, it is best to apply simple and
robust mechanisms to generate affective O (e.g., on reflex agent level [568]) or slightly more
advanced. Moreover, it is not specific states of affect that need to be the target but rather the
core affect of the user that needs to be smoothly (and unnoticeably) directed to a target core
state [316]; see also Section 10.2.2. The next section will provide a few of such applications.

11.5 Applications: Here and now!

In Part IV of this monograph, I presented the research conducted towards affective com-
puting. Moreover, in the previous section I have discussed affective I/O to aid a structured
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discussion towards closing the loop in real-world practice. However, this did not bring us to
the development of consumer applications. That is what I will do here and now! In line with
affective I/O, as outlined in Section 11.4, the two golden rules that secure such endeavors
are: control the complexity and follow the guidelines (see Chapter 10).

One of the main rationales behind the applications that will be presented is that the in-
fluencing algorithm of the closed loop system (see Figure 1.1) is kept as simple as possible.
This suggestion stems from the idea that ASP can never be entirely based on psycholog-
ical changes. As has been discussed in Chapters 2 and 10, many factors outside people’s
emotional state can contaminate affective signals. A pragmatic solution for this problem can
be to express the goals of ASP in terms of the affective signals themselves [615], instead of
in terms of emotional states. This approach has also been baptized the physiology-driven
perspective [654, 680]. With this perspective in mind, I will now present three possible con-
sumer products, one in each discipline of computer science discussed in Chapter 1: HCI, AI,
and health informatics.

11.5.1 TV experience

HCI or better human media interaction is part of everyday life. Not only do we interact with
our PC but, for example, also with our television [715]. However, as will be illustrated here,
human media interaction will soon stretch far beyond that. About a decade ago, Philips
developed Ambient Lighting Technology, which is best known as Ambilight [161]. Using an
array of LEDs, , mounted at the back side of the television, Ambilight generates in real time
video-content matching light effects around the television. These effects not only reduce
eye-fatigue [74], but also enlarge the virtual screen resulting in a more immersive viewing
experience [597, 599]. The latter can be understood by considering the characteristics of
human peripheral vision.

Using real time analysis of both the video and audio signals [255, 705, 742], Ambilight
can be augmented and be used to amplify the content’s effect on the viewer’s emotions.
This would result in a loop similar to that presented in Section 1.5. However, note that this
would require the viewer to be connected to the TV with a biosensing device, see Figure 1.1.
Moreover, the feedback actuator would be the specifications of the Ambilight and/or the
specifications of the audio signals. So, the loop would not be closed but rather open. Such an
application is well within reach; part of the loop proposed here has already been developed
repeatedly over the last decade; that is, the extraction of emotion-related content from audio
and video [254, 255, 681, 705, 742].

In more advanced settings, user identification (see Section 10.3.3) could be employed
to construct user profiles and tap into the user’s personal space [464]. Moreover, physical
characteristics (see Section 10.2.1) and the context (see Section 10.2.4) could be taken into
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account. Ambient light should be considered as just one example of a next generation of
applications, which can be extended to various other domains conveniently, such as our
cloths and (ambient) lighting.

11.5.2 Knowledge representations

One of AI’s core challenges is knowledge representation, which is traditionally approached
from an engineering rather than from a user perspective (cf. Chapter 1). Knowledge repre-
sentation can play five distinct roles: i) a substitute for an object itself; ii) a set of ontological
commitments; iii) a fragmentary theory of intelligent reasoning; iv) a medium for pragmat-
ically efficient computation; and v) a medium of human expression [678].

Although knowledge representation has shown its value in a range of domains, I pro-
pose to take it one step further, using W3C’s Emotion Markup Language (EmotionML).
EmotionML is a ‘plug-in’ language for : i) manual annotation of data; ii) automatic recog-
nition of emotion-related states from user behavior; and iii) generation of emotion-related
system behavior. As such, EmotionML enables a fusion between ASP and traditional know-
ledge representations. Amongst a range of other applications, this enables the digital preser-
vation of our experiences augmented with emotions. For example, not only can I record my
son’s first words or the first time he is playing with a ball, I could also preserve how my son,
my wife, and I felt while this happened. Our affective signals (see Chapters 2-7) could be
recorded, processed, and filed using EmotionML. In parallel, our affective signals could also
be filed as raw signals. In the future, this would perhaps enable advanced digital human
modeling.

11.5.3 Computer-Aided Diagnosis (CAD)

As was already stressed in the introduction (Chapter 1) of this monograph, emotions also
have their impact on our health [326]. They influence our emotional and mental well-
being directly but, as such, also indirectly have their impact on our physical health. Conse-
quently, ASP should be considered as an important part of health informatics. In Chapter 8,
two models were developed that relate people’s stress level to their speech signal. These
two models can serve as a springboard for the development of Computer-Aided Diagnosis
(CAD), which can serve as a second opinion for a therapist.

As was shown in Chapters 5 and 6, when the application area allows it, other biosignals
can conveniently be combined with a speech signal. A combination of biosignals would
improve the predictive power of the model, as was already discussed in Chapter 10. The
models developed in Chapter 8 were tailored to PTSD patients. Follow-up research could
either aim at other specific groups of patients or, preferably, at a generic modeling template
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that could be conveniently tailored to the patient group at hand. In all cases, the closed
loop model can be employed, where the biosensor is the speech signal; hence, an indirect
biosignal (see Figure 1.1). The (bio)feedback actuator can consist of (a combination of) a
variety of elements among which are therapy session, physical or mental exercises, and the
use of medicine. Further, please note that such CAD can also be brought closer to home. A
PC could execute the models as presented in Chapter 8 without any problem, even in real
time.

11.6 Visions of the future

The previous section discussed applications for which the knowledge and techniques
needed are (near to) available. This section stretches way beyond that and looks into two
possible future applications of ASP. These two applications touch upon various branches of
computer science. Moreover, their possible implications will also force us to consider the
ethical aspects of ASP.

11.6.1 Robot nannies

It was 2010, just one year ago, Sharkey and Sharkey [600] stated: “. . . robot manufacturers
in South Korea and Japan are racing to fulfil that dream with affordable robot “nannies”. . . . By
extrapolating from ongoing developments in other areas of robotics, we can get a reasonable idea of
the facilities that childcare robots could have available to them over the next 5 to 15 years. ” [600, p.
161]. If this estimate is (near to) correct, robot nannies could already take care of my future
grandchildren or even my children. This emphasizes that this vision of the future is near,
very near, within one generation from now! Will this vision truly be our future or will it
remain science fiction (for a while longer)?

Crucial in the development of children is infant attachment; that is “the deep emotional
connection that an infant forms with his or her primary caregiver, often the mother.” [600, p. 174].
For children’s development, a good attachment is crucial. As Sharkey and Sharkey [600, p.
174] also state, “Responding appropriately to an infant’s cues requires a sensitive and subtle under-
standing of the infant’s needs.” This is also known as maternal sensitivity [166]. The seminal
work of Harlow and colleagues [258–260] on baby monkeys already showed the importance
of attachment for baby’s. Moreover, it enabled the identification of problems that emerge
with insecure attachment. To establish maternal sensitivity a tailored emotional connection
is required. Par excellence, robot nannies emphasize the need for AI to adopt models of
human emotions, as has already been stressed many times throughout this monograph (in
particular, see Chapter 1).
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The case of robot nannies shows strong resemblances with AI’s Intelligent Tutoring
Systems (ITS) [12, 621], a branch of expert systems that was vivid 25 years ago. ITS used
models of children (i.e., the students aimed to use the ITS) extensively. However, these
were tailored towards a specific (sub)domain, whereas robot nannies would need (more)
generic models. This is precisely what ITS failed to deliver. Moreover, much more than with
ITS, robot nannies should connect emotionally with the children they care for. ASP could
facilitate such a connection, as has been shown throughout this monograph. However, this
adds even more to the complexity of robot nannies, as ASP would need to be employed in
the noisy real world; in particular, see Chapters 2 and 10 for a discussion on this. Moreover,
this gives rise to the ethical aspects of future technology such as robot nannies and AmI [13].

Given the possibly wide implication of ASP -augmented technology such as robot nan-
nies and AmI on our daily lives, ethical issues require a significant amount of attention, not
after but before theory has become practice [200, 280, 525]. Regrettably, it has to be con-
cluded that the resources that are provided for ethical considerations are scarce. Luckily,
progress of science and engineering on emerging technology such as robot nannies, AmI,
and ASP takes considerable time (cf. [89], [195], and [609]). Perhaps, this provides ethics
the time to catch up. However, considering humanity’s history, I am afraid the chance that
ethics will take a position in the forefront of science’s landscape is futile.

11.6.2 Digital Human Model

Throughout this monograph it has been noted repeatedly that, if anything, ASP needs
a holistic approach. However, this has been noted before in other areas of application,
amongst which biometrics. In this section, I will link ASP and biometrics to each other
(cf. [326, 726]) with the aim to work towards a Digital Human Model (DHM). However,
before touching upon this aim, I will provide a brief introduction to biometrics.

Four decades ago, IBM envisioned the identification of persons (ID) by machines [149].
IBM stated that this could be achieved through: i) something the user knows or memorizes,
ii) something the user carries, and/or iii) a personal physical characteristic. From this con-
cept, the field of biometrics∗ emerged; that is, “. . . the science of establishing the identity of an
individual based on the physical, chemical or behavioral attributes of the person.” [309, p. 1]. Essen-
tially, biometrics is a signal processing + pattern recognition problem [309], just like ASP ;
see Chapter 1. It can be applied to either verify or identify an ID, which can be defined as:

Ix =

{

In if maxn{D(Ix, In)} < T

Ix otherwise
(11.1)

where Ix is the representation (e.g., a vector) of an unidentified person, his bioprofile. In is
∗Biometrics is derived from the Greek language and means: life measuring.
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the nth sample from the database (DB). D is a distance metric (e.g., a Minkowsky or quadratic
metric) [507] and T is a threshold. Note that in the case Eq. 11.1 results in Ix = Ix, the
person remains unidentified after the DB is consulted. In case of verification of persons,
1 : 1 matching is applied. So, the DB, as depicted in Eq. 11.1, contains one profile. Then,
maxn{D(Ix, In)} < T becomes D(Ix, In) < T . In practice, frequently a way in between 1 : 1

and 1 : n matching is employed. The bioprofiles that are matched can be built based on:

1. Behavioral attributes; for example, signature, keystroke dynamics, and gait;

2. Physical attributes: fingerprint, iris and retina, facial image and facial thermogram, ge-
ometrical features of the face; for example, ear and nose [459] and geometrical features
of the hand and feet [175];

3. Other: audio-based (e.g., voice), chemical attributes (e.g., odor), and DNA,

which can be classified using a taxonomy on biometrics [309]. As is illustrated by this
enumeration, bioprofiles share various signals with ASP ; for example ECG [300, 345] and
EEG [436]. Hence, not surprisingly, biometric taxonomy shares dimensions with ASP (cf.
Chaper 10), namely: obtrusiveness, user acceptance, overt versus covert, validity (e.g., the
reliability and discriminative power compared with the other signals applied).

ASP can reveal psychological aspects of a person alongside to physiological aspects
and as such become a new class of biometrics. From multi-modal (traditional) biometrics,
a range of behavioral, chemical, and physical characteristics can be derived. Together ASP
and biometrics can lay the foundation for a digital human model (DHM; cf. [172, Chapters
16 and 35] and e.g., [726]). On the one hand, a DHM can be seen as the ultimate model for
biometrics. On the other hand, a DHM satisfies ASP ’s need for a holistic approach. The
development of a DHM is a vision that will not be easily met.

Building DHM is a process in which law and ethics will claim their place too
(cf. [13, 200, 280, 525]). Law considerations comprise: i) rules of privacy, ii) the constitutional
background, and iii) privacy under law, including physical, decisional, and information pri-
vacy [309, Ch. 18]. People cannot prevent personal information (e.g., biosignals) from being
collected by various actors. Therefore, “several security measures are implemented on servers to
minimize the possibility of a privacy violation. Unfortunately, even the most well defended servers
are subject to attacks and, however much one trusts a hosting organism/company, such trust does not
last forever.” [11]. One of the possible solutions would be a “degradation model, where sensitive
data undergoes a progressive and irreversible degradation from an accurate state at collection time,
to intermediate but still informative fuzzy states, to complete disappearance. We introduce the data
degradation model and identify related technical challenges and open issues.” [11]. More even than
with traditional biometrics, DHM requires an adequate handling of this issue.

Ethical considerations emerge from the notion that DHM would enable a much
broader information collection than solely a person’s (rational) ID. One of the ethical issues
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is that biometrics introduces the risk of social exclusion [719], which would increase with the
introduction of biosignal-based biometrics, as it enables the extraction of much more infor-
mation than solely traditional biometric data. This makes the balance between intelligence
(e.g., AmI) and privacy even more sensitive than with traditional biometrics (cf. [684]). Al-
though there is still a long way to go, it will be interesting to see whether biometrics and
ASP will indeed merge and evolve to a DHM and if so, what consequences this will have
for our lives. Human dignity should be a leading denominator in future research on both
DHM and ASP [113, 490], perhaps even more than anything else.

11.7 Conclusion

ASP should be considered as a crucial element for HCI, AI, and health informatics. While
machines evolve rapidly, incorporating more and more sensors, and receiving more and
more autonomy, the interaction with their users has become more delicate than ever before.
Users are increasingly starting to demand that computing devices should understand them.
Bringing affective processes into AI is said to be the field’s missing link. ASP can play a
crucial role in this process. ASP -based technology will prove to be invaluable in supporting
our health and well-being. However, the field’s progress lays far behind science’s (initial)
expectations and results are disappointing. This monograph has explored several of ASP ’s
dimensions and as such contributed to the existing body of knowledge. Additionally, a set
of guidelines has been presented to provide a concise set of research methods and standards
to the field of ASP. I hope these guidelines may boost the field’s progress.

With this monograph representing the work of just a few years, only a humble step has
been made. But now that ASP has both academics’ and industry’s attention, its progress
will be accelerated. Perhaps with the lessons learned throughout this monograph and the
guidelines it provides, this book will become a reference for ASP and aid its research and
development. Then, in time, its progress will prove difficult to stop and a new landscape
will arise for humanity in which even ethical concerns will need to be redefined to retain
their value. Today this may all sound like science fiction; however, there will be a tomorrow
in which it will not, in which our being will be redefined and perhaps this tomorrow will
come even sooner than we may now expect.

Undoubtedly, in time, the progress of ASP will prove to be difficult to stop. ASP will
(possibly) unnoticeably penetrate our everyday lives. Agents and avatars augmented with
ASP will support us in our work, will increase our level of mindfulness, and improve the
quality or our lives. And, as envisioned, ASP will prove to be the essential key in the fusion
of man and his technology. More importantly, hopefully it can also serve as an interface to
help people understanding each other, to help them see what they have in common instead
of staring at their differences.
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Abstract

This appendix will provide a concise introduction to all statistical techniques employed in
this monograph. Three unsupervised statistical analyses will be introduced, namely: princi-
pal component analysis (PCA), analysis of variance (ANOVA), and linear regression models
(LRM). Next, three supervised statistical analysis or machine learning techniques will be in-
troduced, namely: k-nearest neighbors (kNN), artificial neural networks (ANN), and support
vector machines (SVM). Last, validation of models will be discussed. In particular, leave-one-
out cross validation (LOOCV).
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A.1 Introduction

A.1 Introduction

In this appendix, we will briefly introduce the techniques used in the research described
in this monograph. This appendix is not meant to provide a complete overview or taxon-
omy of statistical analysis and statistical pattern analysis and machine learning. For this we
refer to the many handbooks (e.g., [7, 48, 170, 266, 457, 586, 648, 691]) and survey articles
(e.g., [68, 76, 141, 225, 226, 243, 295, 306–308, 310, 347, 348, 394, 468, 602, 690, 729–731]) that
have been published on (statistics and) the various statistical pattern analysis and machine
learning techniques. With this appendix, I simply hope to improve the readability of the
monograph for those readers who are not familiar with all of the statistical techniques ap-
plied throughout the monograph. A general glossary of terms which can also help in this
has been composed by Kohavi and Provost [355].

First, three unsupervised statistical analyses will be introduced, namely: principal
component analysis (PCA), analysis of variance (ANOVA), and linear regression models
(LRM). Second, three supervised statistical analysis or machine learning techniques will be
introduced, namely: k-nearest neighbors (kNN), artificial neural networks (ANN), and sup-
port vector machines (SVM). Third and last, validation of models will be discussed. In par-
ticular, leave-one-out cross validation (LOOCV).

In this monograph, PCA is employed in Chapter 7 to enabled the selection of a subset
of features for the automatic classification of the emotions. Feature selection / reduction
is a crucial phase in the pattern recognition processing pipeline, as it can significantly im-
prove its success, its generalizability, and its efficiency; see also Figure 1.2. It is one of the
most frequently used feature selection/reduction techniques employed in automatic emo-
tion recognition.

ANOVA, and its variations, is the most widely distributed statistical test. This is no
different for research on emotions. In this monograph, ANOVA is mainly used to deter-
mine whether or not there is a significant difference between the means of several emotions.
However, in Chapter 7 it is also employed for feature selection, as an alternative for PCA.

LRM enable the mapping of one dependent variable (e.g., an emotion) onto a set of
independent variables (e.g., speech and/or biosignal parameters). LRM provide an opti-
mal linear model that describes this mapping. It is one of the most widely used statistical
modeling techniques.

k-NN is a simple, intuitive, and elegant supervised machine learning algorithm. Al-
though k-NN is simple and many more advanced machine learning strategies have been
introduced, it is still frequently used. This is no different for research on the classification
of emotions. k-NN’s popularity has many reasons, among which the following triplet: i) Its
simplicity makes it both easy to understand and to implement. ii) Throughout time k-NN
has established itself as a sort of a baseline for machine learning techniques. iii) Although
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the algorithm is rather simple, it often performs surprisingly well and, in adapted form,
even outperforms some far more advanced machine learning strategies (e.g., SVM. [698]).

ANN are inspired by biological neural networks, as they have some common char-
acteristics, which made them an intriguing machine learning technique. Throughout the
years various ANN topologies have been introduced. I will refrain from providing a com-
plete taxonomy of these topologies. Instead I will depict an important class and introduce
its most important representant: the Multi-Layer Perceptron (MLP). The MLP is among the
most widely used ANN. This is no different for automated emotion classification.

SVM are currently very popular. Linear SVM were introduced in 1963 by Vapnik [688],
nonlinear SVM were introduced by Boser, Guyon, and Vapnik [60], and, subsequently, ex-
tended with “soft margines” (i.e., a modified maximum margin, which allows mislabeled
examples) by Cortes and Vapnik [125]. With the two adaptations in the 90s of the previous
century, SVM became a flexible and very powerful class of machine learning techniques. For
reasons of brevity, I will restrict the introduction of SVM to the two class problem; however,
it should be noted that SVM are suitable to handle multiple classes as well (e.g., see [244]).

In principle, supervised machine learning techniques can be developed that correctly
classify 100% of the data. However, the does not answer the question of how they would
classify a new set of similar but not identical data. In other words, how well does the clas-
sifier generalize? The traditional way to tackle this issue was to split the data set into a
train and a test set. However, often, little data is available which reduces the generation
of a robust model (i.e., the classifier). To optimally exploit the data available, the principle
of cross validation can be exploited. Cross validation was introduced by Stone in the 70s
of the previous century [628–630], his two papers are essential reading on this topic. This
appendix will introduce leave-one-out cross validation, which is the strongest form of cross
validation.

A.2 Principal component analysis (PCA)

Through principal component analysis (PCA), the dimensionality of a data set of interrelated
variables can be reduced, preserving its variation as much as possible [319]. For example,
Langley, Bowers, and Murray [375] applied PCA to describe the respiratory-induced vari-
ability of ECG features, P waves, QRS complexes, and T waves. The variables (e.g., ECG’s
signal characteristics) are transformed to a new set of uncorrelated but ordered variables: the
principal components α · x. The first principal component represents, as good as possible,
the variance of the original variables. Each succeeding component represents the remaining
variance, as good as possible. For a brief introduction on PCA, we refer to [551, Chapter 12].

Suppose we have data that can be represented as vectors x, which consists of n vari-
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ables. Then, the principal components are defined as a linear combination α · x of the vari-
ables of x that preserves the maximum of the (remaining) variance, denoted as:

α · x =
n−1
∑

i=0

αixi,

where α = (α0, α1, . . . , αn−1)
T . The variance covered by each principal component α · x is

defined as:

var(α · x) = α · Cα,

where C is the covariance matrix of x.

To find all principal components, we need to find the maximized var(α · x) for them.
Hereby, the constraint α · α = 1 has to be taken into account. The standard approach to do
so is the technique of Lagrange multipliers. We maximize

α · Cα − λ

(

n−1
∑

i=0

α2
i − 1

)

= α · Cα − λ(α · α − 1),

where λ is a Lagrange multiplier. Subsequently, we can derive that λ is an eigenvalue of C

and α is its corresponding eigenvector.

Once we have obtained the vectors α, a transformation can be made that maps all data
x to its principal components:

x → (α0 · x, α1 · x, . . . , αn−1 · x)

Note that the principal components are sensitive to scaling. In order to tackle this prob-
lem, the components can be derived from the correlation matrix instead of the covariance
matrix. This is equivalent to extracting the principal components in the described way after
normalization of the original data set to unit variance.

PCA is also often applied for data inspection through visualization, where the princi-
pal components are chosen along the figure’s axes. Figure A.1 presents such a visualization:
for each set of two emotion classes, of the total of four, a plot denoting the first three princi-
pal components is presented.

A.3 Analysis of variance (ANOVA)

Analysis of variance (ANOVA) is a statistical test to determine whether or not there is a
significant difference between the means of several data sets. ANOVA examines the variance
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Figure A.1: Visualization of the first three principal components of all six possible com-
binations of two emotion classes. The emotion classes are plotted per two to facilitate the
visual inspection. The plots illustrate how difficult it is to separate even two emotion classes,
where separating four emotion classes is the aim. However, note that the emotion category
neutral can be best separated from the other three categories: mixed, negative, and positive
emotions, as is illustrated in b), c), and d).

of data set means compared to within class variance of the data sets themselves. As such,
ANOVA can be considered as an extension of the t-test, which can only be applied on one or
two data sets. We will sketch the main idea here. For a more detailed explanation, we refer
to [551, Chapter 6].

ANOVA assumes that the data sets are independent and randomly chosen from a nor-
mal distribution. Moreover, it assumes that all data sets are equally distributed. These
assumptions usually hold with empirical data. Moreover, the test is fairly robust against
limited violations.

Assume we have D data sets. For each data set d, the sum td and mean s̄d of all samples
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are defined as:

td =

S−1
∑

i=0

xid and s̄d =
td
sd

where xid denotes one data sample and sd denotes the number of samples of data set d.
Subsequently, the grand sum T and the total number of data samples S can be defined as:

T =

D−1
∑

d=0

td and S =

D−1
∑

d=0

sd.

The total sum of squares SS (i.e., the quadratic deviation from the mean) can be written
as the sum of two independent components:

SSH =

D−1
∑

d=0

t2d
s2

d

− T 2

S
and SSE =

D−1
∑

d=0

S−1
∑

i=0

x2
id −

D−1
∑

d=0

t2d
s2

d

,

where indices H and E denote hypothesis and error, as is tradition in social sciences. Together
with S and D, these components define the ANOVA statistic:

F (D − 1, S − D) =
S − D

D − 1
· SSH

SSE
,

where D − 1 and S − D can be considered as the degrees of freedom.

The hypothesis that all data sets were drawn from the same distribution is violated if

Fα(D − 1, S − D) < F (D − 1, S − D),

where Fα denotes the ANOVA statistic that accompanies chance level α, considered to be
acceptable. Often α is chosen as either 0.05, 0.01, or 0.001. Note that as such, ANOVA
can also be considered as an inverse k-means clustering. It assumes k clusters and tests
the validity of this assumption. It determines whether or not the clusters are independent
through an evaluation of between-group variability against within-group variability.

Some conventions in reporting ANOVAs should be mentioned briefly as well. Tests
are reported with their degrees of freedom, exact power, and exact level of significance (i.e.,
α). If α is close to zero, this will be denoted with p < .001, instead of providing an exact
α statistic. As measure of effect size (partial) Eta squared (η2) is often reported, which in-
dicates the proportion of variance accounted for (i.e., a generalization of r/r2 and R/R2 in
correlation/regression analysis; see also the next subsection) [211, 737]. The threshold for
reporting results is α ≤ .050, results with .050 < α ≤ .100 are often denoted as trends.
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A.4 Linear regression models

A linear regression model (LRM) is an optimal linear model of the relationship between
one dependent variable (e.g., the SUD) and several independent variables (e.g., the speech
features). A linear regression model typically takes the following form:

y = β0 + β1x1 + · · ·+ βpxp + ε, (A.1)

where ε represents unobserved random noise, and p represents the number of predictors
(i.e., independent variables x and regression coefficients β). The linear regression equation
is the result of a linear regression analysis, which aims to solve the following n equations in
an optimal fashion:













y1

y2

...
yn













=













x11 · · · x1p

x21 · · · x2p

... . . . ...
xn1 · · · xnp













×













β1

β2

...
βp













+













ε1

ε2

...
εn













. (A.2)

Here, there are n equations for n data points of y. As there are normally more than one
solutions to the problem, a least squares method is used to give the optimal solution. Please
consult a handbook (e.g., [262]) for more information on the least squares method and its
alternatives. A discussion of this topic falls beyond the scope of this appendix.

The following characteristics are used to describe an LRM:

1. Intercept: the value of β0.

2. Beta (B) and Standard Error (SE): the regression coefficients and standard error of its
estimates.

3. Standardized B (β): the standardized Betas, in units of standard deviation of its esti-
mates.

4. T-test (t): a t-test for the impact of the predictor.

5. F-test (F ): an ANOVA testing the goodness of fit of the model for predicting the de-
pendent variable.

6. R-square (R2): the amount of explained variance by the model relative to the total
variance in the dependent variable.

7. Adjusted R-square (R
2
): R-square (R2) penalized for the number of predictors used.

Last, it should be noted that regression models can also fit nonlinear functions. For
example, exponential and logistic models with additive error terms can be employed. An in
depth discussion of this falls well beyond the scope of this Appendix. For more information
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on nonlinear regression models, we refer to two classic handbooks [34, 596] as well as a
recent handbook [261].

A.5 k-nearest neighbors (k-NN)

k-nearest neighbors (k-NN) is a very intuitive, simple, and frequently applied machine
learning algorithm (cf. [4]). It requires only a set of labeled examples (i.e., data vectors),
which form the training set [129]. k-NN can fit linear as well as nonlinear functions [698].

Now, let us assume that we have a training set xl and a set of class labels C. Then, each
new vector xi from the data set is classified as follows:

1. Identify k vectors from xl that are closest to vector xi, according to a metric of choice;
for example, city block, Euclidean, or Mahalanobis distance. For more information on
the choice of k and its importance, I refer to [253].

2. Class ci that should be assigned to vector xi is determined by:

ci = argmax
c∈C

k−1
∑

i=0

wiγ(c, cl
i),

where γ(.) denotes a Boolean function that returns 1 when c = cl
i and 0 otherwise and

wi =

{

1 if δ(xi, x
l
i) = 0;

1
d(xi,xl

i)
2

if δ(xi, x
l
i) 6= 0,

where δ(.) denotes the distance between vectors xi and xl
i. Note that, if preferred, the

factor weight can be simply eliminated by putting wi = 1.

3. If there is a tie of two or more classes c ∈ C, vector xi is randomly assigned to one of
these classes.

The algorithm presented applies to k-NN for weighted, discrete classifications, as was ap-
plied in the current research. However, a simple adaptation can be made to the algorithm,
which enables continuous classifications.

Also, please note that (distance-weighted) k-NN can be generalized to estimate regres-
sion models [157], which is often denoted as (k-)NN regression [465]. For more information
on these and other issues, we refer to the various freely available tutorials and introductions
that have been written on k-NN.
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A.6 Artificial neural networks (ANN)

The human brain has about 1011 neurons and each neuron may have 104 synaptic inputs
and input weights. In contrast, artificial neural networks (ANN) consist of only a few dozen
units (or neurons or perceptrons) and their number of inputs is even less [266]. Many ANN
learn by adapting the synaptic weight values against each other when training examples are
presented. However, where in the brain would the computing process reside, which would
execute synaptic weight adjusting algorithms and where would these algorithms have come
from? The evolutionary feasibility of these kinds of algorithms can be seriously questioned.
Nevertheless, ANN are frequently claimed to have similar behavior to biological neural
networks. However, it should be noted that this is a claim that can hardly be justified.
Nevertheless, ANN have proved their use for a range of pattern recognition and machine
learning applications. One of their appealing characteristics is that they can fit nonlinear
functions. Moreover, ANN have a solid theoretical basis [48, 457].

ANN consist of a layer of input units, one or more layers of hidden units, and a layer
of output units. These units are connected with a weight wij, which determines the transfer
of unit ui to unit uj. The activation level of a unit uj is defined as:

aj(t + 1) = f(aj(t), ij(t)),

where t denotes time, f(.) is the activation function that determines the new activation based
on the current state a(t) and its effective input, defined as:

ij(t) =

Uj−1
∑

i=0

ai(t)wij(t) + τj(t),

where τj(t) is a certain bias or offset and Uj denotes the number of units from which a unit
uj can receive input. Note that at the input layer of an ANN, the input comes from the
environment; then, i is the environment instead of another unit.

On its own, each neuron (or perceptron) of an ANN can only perform a simple task. In
contrast, a proper network of units can approximate any function [48, 170, 266, 395]. More-
over, ANN cannot only process input, they can also learn from their input, either supervised
or unsupervised. Although various learning rules have been introduced for ANN, most can
be considered as being derived from Hebb’s classic learning rule:

∆wij = ηaiaj ,

which defines the modification of the weight of connection (ui, uj). η is a positive constant.
Its rationale is that wij should be increased with the simultaneous activation of both units
and the other way around.
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Various ANN topologies have been introduced. The most important ones are recur-
rent and feed-forward networks, whose units respectively do and do not form a directed
cycle through feedback connections. In the current research, a feed-forward networks have
been applied: the classic Multi-Layer Perceptron (MLP), as is more often used for emotion
recognition purposes; see also Table 2.4. It incorporated the often adopted sigmoid-shaped
function applied to f(.):

1

1 + e−aj

Throughout the 60 years of their existence, a broad plethora of ANN have been pre-
sented, varying on a range of aspects; for example, their topology, learning rules, and the
choice of either synchronous or asynchronously updating of its units. More information on
ANN can be found in various introductions to ANN.

A.7 Support vector machine (SVM)

Using a suitable kernel function, a support vector machine (SVM) ensures the division of
a set of data into two classes, with respect to the shape of the classifier and the incorrect
classification of the training samples [96, 125]. For a recent concise survey on SVM as well a
review on optimization techniques for SVM, I refer to [602]. The main idea of SVM can best
be explained with the example of a binary linear classifier.

Let us define our data set as:

D =
{

(xi, ci)|xi ∈ R
d, ci ∈ {−1, 1}

}

for i = 0, 1, . . . , N − 1,

where xi is a vector with dimensionality d from the data set, which has size N . ci is the class
to which xi belongs. To separate two classes, we need to formulate a separating hyperplane
w · x = b, where w is a normal vector of length 1, x is a feature vector, and b is a constant.

In practice, it is often not possible to find such a linear classifier. In this case, the
problem can be generalized. Then, we need to find w and b so that we can optimize

ci(w · xi + b) ≤ ξi,

where ξi represents the deviation (or error) from the linearly separable case.

To determine an optimal plane, the sum of ξi must be minimized. The minimization of
this parameter can be solved by Lagrange multipliers αi. From the derivation of this method,
it is possible to see that often most of the αis are equal to 0. The remaining relevant subset
of the training data x is denoted as the support vectors. Subsequently, the classification is
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performed as:

f(x) = sgn

(

S−1
∑

i=0

ciαix · xi + b

)

,

where S denotes the number of support vectors.

For a non-linear classification problem, we can replace the dot product by a non-linear
kernel function. This enables the interpretation of algorithms geometrically in feature spaces
non-linearly related to the input space and combines statistics and geometry. A kernel can
be viewed as a (non-linear) similarity measure and can induce representations of the data in
a linear space. Moreover, the kernel implicitly determines the function class, which is used
for learning [586].

The SVM introduced here classified samples into two classes. In the case of multiple
classes, two approaches are common: 1) for each class, a classifier can be built that separates
that class from the other data and 2) for each pair of classes, classifiers can be built. With
both cases, voting paradigms are used to assign the data samples xi to classes ci. For more
information on SVM, [48, 586] can be consulted.

A.8 Leave-one-out cross validation (LOOCV)

Assume we have a classifier that is trained, using a part of the available data set: the training
data. The training process optimizes the parameters of a classifier to make it fit the training
data. To validate the classifier’s performance, an independent sample of the same data set
has to be used [48, 457]. Cross validation deviates from the general validation scheme since
it enables the validation of a classifier without the need of an explicit validation set. As such,
it optimizes the size of the data set that can be used as training data.

Various methods of cross validation have been introduced. In this section, we will in-
troduce leave-one-out cross validation (LOOCV), a method frequently used to determine
the performance of classifiers. LOOCV is typically useful and, consequently, used in the
analysis of (very) small data sets. It has been shown that LOOCV provides an almost un-
biased estimate of the true generalization ability of a classifier. As such, it provides a good
model selection criterion.

Assume we have a classifier (e.g., k-NN, a SVM, or an ANN) of which we want to
verify the performance on a particular data set. This data set contains (partly) data samples
xi with known correct classifications cl

i. Then, the classifier’s performance can be determined
through LOOCV, as follows:

1. ∀i train a classifier Ci with the complete data set x, except xi.
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2. ∀i classify data sample xi to a class ci, using classifier Ci.

3. Compute the average error of the classifier through

E =
1

D
argmax

c∈C

D−1
∑

i=0

γ(ci, c
l
i),

where D denotes the number of data samples and γ(.) denotes a Boolean function,
which returns 1 if ci = cl

i and 0 otherwise. Note that 1
D

can be omitted from the formula
if no comparisons are made between data sets (with different sizes).

Instead of one data sample xi, this validation scheme also allows a subset of the data to be
put aside. Such a subset can, for example, consist of all data gathered from one person. This
enables an accurate estimation of the classification error E on this unknown person.

The processing scheme as presented here can be adapted in various ways. For example,
in addition to the Boolean function γ(.), a weight function could be used that expresses the
resemblance between classes. Hence, not all misclassifications would be judged similarly.

All results reported in Chapter 7 were determined through LOOCV, if not otherwise
specified. For more information on cross validation, we refer to [177, Chapter 17] and as
more general reference works to [48, 516]. For an interesting discussion on the topic we refer
to a series of articles [231, 555, 746].

Although only rarely applied, the principle of cross validation (e.g., LOOCV) can also
be applied on unsupervised learning techniques. For example, Picard and Cook applied
cross validation on LRM [519]. Similarly, cross validation could be employed on PCA and
ANOVA, although its implications will be a little different.
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Slowly computers are becoming dressed, huggable and tangible operating interfaces.
They are being personalized and are expected to understand more of their users’ feelings,
emotions, and moods. Consequently, concepts, such as emotions, which were originally the
playing field of philosophers, sociologists, and psychologists, have also become entangled
with computer science. In 1997, Picard baptized the topic affective computing. Moreover,
she identified biosignals as an important covert channel to capture emotions, in addition to
channels such as speech and computer vision. This monograph explores several factors that
have been posed to be of key importance to affective computing, in particular to affective
signal processing (ASP) : the use of biosignals for emotion-aware systems. It is divided into
five parts: i) a prologue, ii) basic research on baseline-free ASP, iii) basic research on bi-
modal ASP, iv) three studies towards affective computing, and v) an epilogue. Additionally,
an appendix provides a description of all statistical and pattern recognition techniques used.
Here is a concise summary of each of the five parts.

In the introduction, Chapter 1 of the prologue (Part I ), a brief introduction of emotion
theory, the field of affective computing, A SP, and their relevance for computer science is
provided. Human-Computer Interaction, Artificial Intelligence, and health informatics are
described. The monograph’s working model, a closed loop model (i.e., a control system with
an active feedback loop), is introduced and its signal processing and classification compo-
nents are described. A concise overview of the biosignals investigated is given. In Chapter 2
a review of affective computing is presented, with an emphasis on ASP using biosignals.
The conclusion of this chapter is that ASP lacks the progress it needs. Possible angles of
view that can aid ASP ’s progress are explored in the next three parts.

In Part II two basic studies on baseline-free ASP using statistical moments are pre-
sented. These two studies address a number of key issues for ASP. Chapter 3 covers research
for which dynamic real world stimuli (i.e., movie scenes) were used to induce emotions. The
ElectroMyoGraphy (EMG) of three facial muscles was recorded, which is often done to es-
tablish a ground truth measurement. In addition, the participants’ ElectroDermal Activity
(EDA) was recorded. EDA is a robust well documented biosignal that reveals the level of
experienced arousal. In Chapter 4 analyses on the same data set as in Chapter 3 are re-
ported. The studies differ in the choice of time windows, which enabled research towards
the impact and usage of this parameter for ASP. Moreover, events in the movie scenes were
directly linked to affective responses.

Part III Two studies are presented that employed bi-modal ASP by the rare combi-
nation of ElectroCardioGram (ECG) and speech. These studies only differ from each other
with respect to the stimuli that were used for emotion elicitation, which has recently been
shown to be a factor of importance [8]. The research presented in these two chapters also as-
sessed the influence of emotion representations by analyzing the obtained data using both
the dimensional valence-arousal model and the six basic emotions. Moreover, the impact
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of the environment (or context), the personality traits neuroticism and extroversion, and
demographics on ASP was explored. In Chapter 5 research is reported that employed a
(or perhaps even the) reference set for affective computing : Lang, Bradley, and Cuthbert’s
(1994) International Affective Picture System (IAPS). In Chapter 6 a study is presented that
used the same set of stimuli (i.e., movie fragments) as was used in the research described in
Chapters 3 and 4. This enabled a comparison of static versus dynamic stimuli and, as such,
assessed their validity.

Part IV consists of three chapters that present studies that work towards affective com-
puting. First, in the research in Chapter 7, a complete signal processing + classification pro-
cessing pipeline for ASP is executed on the data already presented in Chapters 3 and 4.
Several preprocessing strategies and automatic classifiers are explored. Second, in Chap-
ter 8, two clinical case studies on ASP are presented that aim to explore the feasibility of
Computer Aided Diagnosis (CAD) for patients suffering from a post-traumatic stress dis-
order (PTSD). Third, in Chapter 9, the data of the studies presented in Chapter 8 are used
to develop a complete signal processing + pattern recognition processing pipeline, similar
to the one presented in Chapter 7. As such, this chapter explores the feasibility of the envi-
sioned emotion-aware systems, in this case: A SP-based Computer-Aided Diagnosis (CAD)
for mental health care.

This monograph’s epilogue, Part V, consists of two chapters. In the first one, Chap-
ter 10, the lessons learned from the research presented in the previous chapters is described.
It formulates a set of prerequisites and guidelines of which the author hopes that it can serve
as a user manual for other researchers who are interested in research on ASP. In this manual,
the following issues are discussed: physical sensing characteristics, temporal construction,
normalization, context, validation, triangulation, and user identification. In the second and
last chapter of this part, Chapter 11, the monograph ends with a wrap-up of the work, which
is followed by a historical reflection. Next, a triplet of applications is presented that is (al-
most) ready to be brought to the market here and now, which are followed by two possible
future applications. This monograph closes with a brief conclusion: The work presented in
this monograph revealed several factors of importance for ASP, which helps the scientific
community to understand ASP better. Moreover, I expect that the manual that resulted from
the work presented in this monograph will guide future research on ASP to higher levels.
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Langzaam maar zeker veranderen computers, ze krijgen een andere vorm dan de
klassieke PC kast of een laptop, ze reageren op aanrakingen, kunnen worden aangekleed, en
zijn aaibaar. Ze worden persoonlijker en we verwachten dat ze onze gevoelens, emoties en
stemmingen begrijpen. Zo kon het ook gebeuren dat een fenomeen als emoties, oorspronke-
lijk vooral voer voor filosofen, sociologen en psychologen, werd omarmd door informatici.
In 1997 noemde Picard de automatische herkenning van emoties door computers affective
computing. In aanvulling op spraak en visuale perceptie, identificeerde zij physiologische
signalen als een belangrijke impliciet kanaal om emoties te identificeren. Dit boek verkent
een aantal factoren waarvan gesteld wordt dat deze belangrijk zijn voor affective comput-
ing, in het bijzonder voor affective signal processing (ASP) : het gebruik van fysiologische
signalen voor empatische systemen. Het boek is opgedeeld in vijf delen: i) een proloog, ii)

onderzoek naar ongecorrigeerde ASP, iii) onderzoek naar bi-modale ASP, iv) drie studies
naar empatische systemen, en v) een epiloog.

In de introductie, Hoofdstuk 1 van de proloog (Deel I ), wordt een korte introductie
gegeven van emotie theorie, het veld affective computing, A SP en hun relevantie voor in-
formatica. Mens-machine interactie, kunstmatige intelligentie en medische informatica wor-
den beschreven. Het werkmodel van dit boek, een closed loop model (een systeem met
een actieve feedback lus), wordt geïntroduceerd en haar signaalverwerkings- and classifi-
catiecomponenten beschreven. Tevens wordt een kort overzicht gegeven van de fysiologis-
che signalen die zijn onderzocht. In hoofdstuk 2 wordt een overzicht gepresenteerd van
het reeds bestaande onderzoek naar affective computing, met nadruk op ASP dat gebruik
maakt van fysiologische signalen. De conclusie van dit hoofdstuk is dat ASP de vooruit-
gang ontbeert die het nodig heeft. Mogelijke insteken die de vooruitgang in ASP kunnen
helpen worden in de volgende drie delen verkend.

In Deel II worden twee onderzoeken gepresenteerd naar ongecorrigeerde ASP door
middel van statistische momenten. Hierin werd een aantal belangrijke aspecten van ASP
onderzocht. In hoofdstuk 3 wordt onderzoek beschreven waarin gebruik werd gemaakt
van dynamische stimuli (i.e., filmfragmenten) om emoties los te maken. De ElectroMyo-
Graphy (EMG) van drie gezichtsspieren van de deelnemers werd opgenomen; dit wordt
vaak gedaan om een zgn. ground truth te bepalen. Ook werd de ElectroDermal Activity
(EDA) van de deelnemers opgenomen. EDA is een robuust, goed gedocumenteerd fysiolo-
gisch signaal dat registreert in hoeverre men zich opwindt. In Hoofdstuk 4 worden analyses
beschreven van dezelfde data set als in Hoofdstuk 3. Deze onderzoeken verschilden alleen
in de keuze van de tijdvakken, wat het mogelijk maakte de impact en het gebruik van deze
parameter voor ASP te bepalen. De korte tijdvakken zoals gebruikt in Hoofdstuk 4 maakte
het ook mogelijk de gebeurtenissen in de filmfragmenten te koppelen aan affectieve reacties.

In Deel III worden twee studies gepresenteerd die bi-modale ASP toepassen, namelijk
de zeldzame combinatie van het ElectroCardioGram (ECG) en het spraaksignaal. Deze stud-
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ies verschilden enkel voor wat betreft de stimuli die werden gebruikt om emoties los te
maken, hetgeen zeer recent een belangrijke factor bleek te zijn [8]. In het onderzoek werd
tevens gekeken naar de invloed van emotiemodellen op het analyseren van de verkregen
data, waarbij zowel gebruik werd gemaakt van het dimensionale valence-arousal model als
van de zes basisemoties. Daarnaast werd ook de invloed van de omgeving (of context),
de persoonlijkheidskarakteristieken neuroticisme en extroversie, en demografische factoren
op ASP onderzocht. In Hoofdstuk 5 wordt onderzoek beschreven dat gebruik maakte van
één (of misschien wel de) referentieset voor affective computing : het International Affective
Picture System (IAPS) van Lang, Bradley, en Cuthbert (1994). In Hoofdstuk 6 wordt een
onderzoek behandeld dat gebruik maakte van dezelfde set stimuli (i.e., film fragmenten) als
die gebruikt zijn in het onderzoek beschreven in de Hoofdstukken 3 en 4. Dit maakte een
vergelijking tussen statische en dynamische stimuli mogelijk en zo kon ook de validiteit van
beide sets worden bepaald.

Deel IV bestaat uit drie hoofdstukken waarin onderzoek naar empatische systemen
wordt beschreven. In Hoofdstuk 7 wordt beschreven hoe de complete signaalverwerkings
+ classificatie lijn voor ASP is uitgevoerd op de data die reeds gepresenteerd was in Hoofd-
stukken 3 en 4. Verscheidene voorbewerkingen en classificatie-algoritmes werden toegepast.
In Hoofdstuk 8 worden twee klinische onderzoeken gepresenteerd die als doel hadden te
bezien of een door de computer ondersteunde diagnose voor patiënten met een posttrau-
matisch stresssyndroom mogelijk is. In Hoofdstuk 9 wordt de data van de onderzoeken
uit Hoofdstuk 8 gebruikt om de complete signaalverwerkings + classificatie lijn voor ASP,
zoals geïntroduceerd in Hoofdstuk 7, toe te passen. Als zodanig verkent dit hoofdstuk de
haalbaarheid van empatische systemen, in dit geval op A SP-gebaseerde Computer-Aided
Diagnosis (CAD) voor de geestelijke gezondheidszorg.

Het epiloog van dit boek, Deel V, bestaat uit twee hoofdstukken. In het eerste hoofd-
stuk, Hoofdstuk 10, komen de lessen aan bod die geleerd zijn van het onderzoek uit de
voorgaande hoofdstukken. Een set voorwaarden en richtlijnen is geformuleerd die kunnen
dienen als handleiding voor collega’s die, net als de auteur, geinteresseerd zijn in onderzoek
naar ASP. In deze handleiding komen de volgende onderwerpen aan bod: fysische karak-
teristieken, temporele aspecten, normalisatie, context, validatie, triangulatie en gebruikersi-
dentificatie. In het tweede en laatste hoofdstuk van dit deel, Hoofdstuk 11, wordt het werk
uit dit boek samengevat en wordt hierop gereflecteerd vanuit een historisch oogpunt. Ver-
volgens wordt eerst een drietal toepassingen van ASP gepresenteerd die (bijna) klaar zijn
voor de markt en vervolgens worden twee mogelijke toekomstige toepassingen beschreven.
Als afsluiting van het boek wordt geconcludeerd dat het onderzoek zoals beschreven in dit
boek verschillende belangrijke aspecten van ASP heeft geïdentificeerd, hetgeen de weten-
schappelijke gemeenschap kan helpen ASP beter te begrijpen. Verder verwacht ik dat de
onderzoekshandleiding die resulteerde uit mijn onderzoek toekomstig onderzoek naar ASP
naar een hoger niveau kan brengen.
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Wenen, Oostenrijk, 1 augustus 2011

Tijdens mijn afstuderen, rond de eeuwwisseling, onderzocht ik in hoeverre de ernst van
psychische trauma’s werden gereflecteerd in het spraaksignaal. Dit onderzoek verdiende
een passend vervolg maar ik besloot een andere richting te verkennen: cognitive computer
vision, waarin ik promoveerde. Mijn afstudeeronderwerp heeft mij in die tijd echter nooit
losgelaten. Maar meer en meer en keer op keer kwam ik er telkense weer achter dat het
zo veel complexer was dan ik al dacht. Met dit boek heb ik geprobeerd enige structuur
aan te brengen in het complexe domein van emotieherkenning door computers. Dit boek
mag als niet meer dan een aanzet worden beschouwd, echter ook dit bleek al een enorme
uitdaging te zijn. Een uitdaging waarbij ik steun heb gehad van veel mensen en ook continu
heb mogen samenwerken met tal van mensen.

Ik heb drie begeleiders gehad die mij ieder op hun eigen manier fantastisch begeleid
hebben. Ton, bij jou is het allemaal begonnen, meer dan 10 jaar geleden. Alsnog is er
dan dit boek, misschien veel te laat maar beter laat dan nooit. Ik zal je nooit genoeg kun-
nen bedanken voor je onvoorwaardelijke begeleiding en ook steun door al die jaren heen.
Joyce, zonder het toen te weten, betekende onze ontmoeting 5 à 6 jaar geleden de defini-
tieve doorstart van mijn onderzoekslijn, waarvan het product hier nu ligt. In al die jaren
hebben wij buitengewoon prettig samengewerkt. Ook enorm bedankt voor je snelle reac-
ties, je nauwkeurigheid, je doortastendheid, al het werk dat je hebt verzet en ook voor je
oprechtheid. Anton, ik liep bij jou binnen met het gekke idee om een tweede keer te gaan
promoveren. Je hebt mij met open armen ontvangen, me je volledige vertrouwen gegeven
en later een plaats in je groep gegeven. De vanzelfsprekendheid waarmee je dit hebt gedaan
vind ik tot op de dag van vandaag heel bijzonder.

Dear committee members, I conceive it as an honor that you have been willing to judge
this monograph. Geachte prof. Apers fantastisch dat u tijd heeft kunnen vrijmaken om als
commissielid zitting te nemen. Prof. Esposito, dear Anna, thank you so much for your
dedication, for you detailed comments! They have improved this monograph substantially
and have been a source of inspiration for me, while finishing this monograph. Geachte prof.
Hermens, als expert in twee aan dit boek aansluitende gebieden, beschouw ik het als een
eer dat dit boek aan uw criteria voor een promotie heeft voldaan. Prof. Hoenkamp, beste
Eduard, fantastisch om je erbij te hebben! Heel erg bedankt voor je immer positief kritische
en multidisciplinaire blik op mijn werk. Prof. Schomaker, beste Lambert, net als Eduard,
was jij aanwezig bij het ontstaan van dit werk. Wat ik toen niet wist, maar waar ik door de
jaren heen achter kwam, is dat jij > 25 jaar geleden al prachtig onderzoek hebt gedaan op het
gebied van dit proefschrift. Ik beschouw het als een eer dat dit werk aan jouw standaarden
voor een promotie heeft voldaan.
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Door de jaren heen heb ik met veel mensen mogen samenwerken. Zonder hen lag dit
boek er nu zeker niet. Willem, al vond je mijn onderzoek eigenlijk te divers, je hebt mij wel
de ruimte gegeven om mijn eigen onderzoek te doen; heel veel dank hiervoor. Marleen, het
was op de zomerfeesten in (ik denk) 2005 dat jouw afstuderen ter sprake kwam. Dit gesprek
markeerde de herstart van jouw afstuderen en de doorstart van mijn onderzoek. Vanaf dat
moment ging het allemaal heel snel en kwam alles meer dan op z’n pootjes terecht. :) Be-
dankt voor de bijzonder prettige en efficiente samenwerking. Marjolein, via Marleen, kwam
je bij mij (en daarmee bij Joyce) uit. Ook jij bedankt voor de prettige samenwerking. Joris,
via Marjolein, kwam jij vervolgens weer bij mij terecht. De afgelopen jaren hebben hebben
we bijzonder intensief, efficient maar ook prettig samengewerkt. Ik hoop dat we dit nog
even kunnen volhouden! Viliam thank you for your work conducted 5 years ago and thank
you for the pleasant cooperation recently. Frans, bedankt voor je leergierigheid, de pret-
tige samenwerking en voor het niet te beroerd zijn om even door te douwen, als het nodig
was. Ik kan alleen maar zeggen dat ik hoop dat we nog lang op deze manier door kunnen
gaan. :) Jennifer, thank you for the pleasant cooperation and for your commitment to the
prerequisites articles. Thank you also for sharing anecdotes, memories, and knowledge, for
which I’m all very grateful. Lynn, heel, heel erg véél dank voor je talloze correcties en de
fantastische service hierbij. Maar vooral ook voor het geduld hierbij, de snelheid waarmee je
mijn stukken corrigeerde en je (dappere) pogingen om me nog wat te leren. Dames van het
HMI-secretariaat, heel erg bedankt voor alle support en de snelle reacties op al m’n mailtjes.

Vrienden en familie bedankt voor de steun en vooral ook voor de ontspanning. In
het bijzonder, Brommelhoofdje bedankt voor de Kaplan & Sadock, Van Wees B.V. bedankt
voor de “printing facilities” en Selma en Arjan bedankt voor B&B in A’dam. Ad enorm
bedankt voor de prachtige kaft en boekenlegger die je ook dit boek hebt gegeven. Je hebt
m’n gedachten prachtig weten te visualiseren. Oma, al leest u dit dan niet meer, toch enorm
bedankt voor de mooie discussies over het werk wat in dit boek is beschreven, voor uw
vertrouwen en voor de prachtige boeken, in het bijzonder die van Paul Ekman en Frans de
Waal. Papa, mama, Anntje en Rick en Ton en Karin bedankt voor jullie onvoorwaardelijke
steun! Lieve Winnie bedankt voor al je hulp, je altijd kritische blik en vooral ook voor je
onvoorwaardelijke steun, ook op die momenten waarop het eigenlijk weer eens tè druk was.
Zonder jouw steun had dit boek er nu niet gelegen. Fantastisch Tijntje van me, jij zorgde
er altijd wel voor dat papa aandacht voor je had; en terecht! Het gaf me de broodnodige
afleiding door regelmatig met je te “klieren” of samen een Duplo huis te bouwen. :) Dit
“hobby project” is nu afgesloten, dat zal thuis allicht wat meer tijd en rust brengen.
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